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0.   General problem of noise/dynamics in strongly disordered quantum systems at low T. 

Novel (?) type of transition between noisy and quiet behaviors.  

1. Experimental systems:  

 A. strongly disordered superconducting films of InO, TiN, Bi etc ← this talk 

 B. Paramagnetic spins in insulators and superconductors (but not in normal metals). 

 C. Large Josephson arrays  

2.   Brief summary of data and  theoretical models of SI transition. 

3. Conclusion: plausible model for the SI transition in disordered films is the one that also 

might show noise freezing out at very low T.    

 
1. Bethe lattice model: toy model for SIT transition in disordered superconductors and spin 

systems.  

2. Solution of Bethe lattice model: importance of RSB. 

3. Qualitative picture of both the SI and noisy-quiet transition:                                                                                                           

   Very strong inhomogeneity, insulator and „superinsulator‟. 

  

 Very recent experimental data from Grenoble group (Sacépé, Dubouchet, Chapelier, 

Sanquer, Shahar et al)  that confirm theoretical predictions…………………..Conclusions. 

 



FUNDAMENTAL (PHILOSOPHICAL) QUESTION 

OF NOISE GENERATION AT VERY LOW T 

Localized modes + interaction between them 

 

Energy delocalization 
? ? 

Local spectrum 

E E 

Interaction 

OR 

“Quiet“ Noisy 

Which model to study? 
 

Ideally it should correspond to a well 

studied experimental system to test new 

theoretical methods…  

 

SI transition in films is a good candidate 

 

Paramagnetic spins in insulators and 

superconductors 

 

Josephson arrays are described by more 

complicated models due to long range 

Coulomb interaction.  

 

Local levels = “spins” 



FUNDAMENTAL (PHILOSOPHICAL) QUESTION 

OF NOISE GENERATION AT VERY LOW T 

E E 

Interaction 

OR 

“Quiet“ Noisy Local levels = “spins” 

Transition 

Two cases (and two transitions): 

 

Levels are sharp only at low energies 

Or 

Levels are sharp at all energies 

 

Side remark.  

 Nothing is  really novel… 

 

Symmetry broken by the transition: 

Independent time reparametrizations 

at different space locations 

Equivalent to  

goi(x)→ goi(x)+εoi(x)  

for metric tensor 

Discussed in the context of quantum 

gravity  



PHASE DIAGRAM OF BETHE LATTICE MODEL 
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0~ exp( ( , ) / )g T T 

*~ exp( / )T 

In the SI model the appearance of the sharp levels at low 

energies coincide with disappearance of order parameter. 

Very inhomogeneous phase is formed near critical point.  

←Disorder 



SI - EXPERIMENTAL PHASE DIAGRAM  

InO, TiN, thin Be, some Bi… 

What are the properties of Superconductor – Insulator transition at very low T? 



 Fermi model (suppression of fermion pairing 
by Coulomb interaction.  

 Bose model (preformed Cooper pairs) 
  Competition between Coulomb repulsion and Cooper pair 

hopping (large scale physics) – similar to transition in 
Josephson junction arrays.  

 

  Competition between disorder and Cooper pair hopping 

ALTERNATIVE SCENARIOS OF 

SUPERCONDUCTOR-INSULATOR TRANSITIONS 



SUPERCONDUCTOR-INSULATOR: 

EXPERIMENTAL EVIDENCE 

Direct evidence for the gap above the transition (Sacépé, 

Dubouchet, Chapelier, Sanquer, Shahar et al).  

Activation behavior does not show  gap suppression at the 

critical point as a function of the disorder (Sahar, Ovaduyahu, 

1992). 

Conclusion: Gap persistence rules out fermion mechanisms 

Indicates preformed Cooper pairs.  



SUPERCONDUCTOR-INSULATOR: 

EXPERIMENTAL EVIDENCE 

If Josephson/Coulomb model is correct, the same 

behavior should be observed in Josephson arrays…  

BUT IT IS NOT 

Disordered films 

(Kapitulnik) 

Zant and Mooji, 1996 

At non-zero field Josephson arrays of 

more complex (dice) geometry show 

temperature independent resistance 

in a wide range of EJ/Ec. (Pannetier 

and Serret 2002) 



BOSE MODEL (PREFORMED COOPER PAIRS) 

 Competition between Cooper pairing and disorder, i.e. no Coulomb 
interaction. (Ma and Lee, 1985, Kapitulnik and Kotliar 1985) 

 Potential disorder does not affect the superconductivity provided that  

 Tc »δL=1/ νoξ
D – level spacing in the volume of localization. 

  

 For  Tc «δL«ωD local pairing is still possible leading to parity gap: 

 all low lying excitations are Cooper pairs localized in fractal eigenstates 
of localization problem (Feigelman, Kravtsov and others).  

 

 Superconductor-insulator transition happens when boson hopping Mij 
between these states is comparable to the spread of the individual 
energies. Model Hamiltonian:  
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In the insulating phase the transport is via Cooper pair hopping. 

Why the gap?  



TOY MODEL OF SIT DRIVEN BY DISORDER WITH PURELY 

ATTRACTIVE INTERACTION AND PREFORMED PAIRING.  

 Basis of exact single particle states.  Close to insulator-metal transition 

localized single particle states are large and have many overlaps.  

 

 

 Leave out single particle states (spin representation, confirmed by Grenoble 

data): 

 

 

 

 What are general properties of the quantum transition in the models in 

random field? Applies also to strongly disordered magnets (paramagnet-

ferromagnet transition).    
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TOY MODEL OF SIT DRIVEN BY DISORDER WITH PURELY 

ATTRACTIVE INTERACTION AND PREFORMED PAIRING.   

 Because number of neighbors is large the loops can be neglected. The 
model on Bethe lattice is believed to reproduce the main features of the 
transition and phases on both sides (formally we ignore small 1/Z effects 
but keep 1/Log(Z): 

 
, 1 ,

,

  0  with 1z x x

j j i k j k j

j i j

g
H K

K
        

, 1 , , 1 ,

,

(  + ) with 1,  ( , )z x x y y

j j i k j k i k j k j

j i j

g
H K W W

K
            

Equivalent to the „superconducting‟ model: 

Bethe lattice, locally: 



MODEL SOLUTION 1: CAVITY EQUATIONS. 

Main idea: cavity equations.  

Introduce effective field that simulates the effect of spins at higher levels: 
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Roughly  - this approximation is sufficient to get the transition temperature to O(1/K): 

Tanh
k j k jk j

k

j
k j k j

hhg
h

K Th












If averaged over uniform distribution of ξ we get usual BCS-like equation:  
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 that tells us that Tc >0 for any g>0.  

Can be further improved (leading order in 1/K):  

1. Diagonalize H analytically/numerically 

2. Find <σ>  

The difference at large K is not significant.   



MODEL SOLUTION 2: EQUATION FOR TC. 

To find Tc we need to find when infinitely small field applied at the boundary leads to 

large field in the center: 
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That is whether Z=exp(fN) with f>0 (“magnet” or “superconductor” ) or f<0 (paramagnet)? 

Non-trivial physics is due to the fact that Z is not necessarily self-averaging quantity! 

Consider higher moments: 
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The moments diverge at T=g/K which becomes higher than „average‟ Tc=exp(-1/g). 



MODEL SOLUTION 3: EQUATION FOR TC. 
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Z=exp(fN) with f>0 (“magnet” or “superconductor” ) or f<0 (paramagnet, non-supercond)? 

Reminder: Non-trivial physics is due to the fact that Z is not necessarily self-

averaging quantity! 

For T<g/K Z is not self-averaging and typical Ztyp=expN<f> might be different from 

<Z>. 

Typical lattice shows the transition when <f> > 0.  

To find average <f> use replica trick: 
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Solve the problem for n replicas and continue to n=0. Similar problems were solved in 

the context of directed polymer physics (Derrida and Spohn). 

Replica symmetric solution (i.e. all replicas are independent) gives the BCS-like result.  

However at low T(g) replica symmetry breaks down. 



EQUATION FOR TC IN ONE STEP RSB.  
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Above transition all 

paths are independent 

0

Assumption that all paths are 

independent leads the same result 

as before:
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EQUATION FOR TC IN ONE STEP RSB.  
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Below transition paths 

are grouped into bundles 

of m path in one byndle 
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EQUATION FOR TC IN ONE STEP RSB.  
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EFFECTIVE NUMBER OF PATHS AT THE TRANSITION.  

2
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Conclusion: only a small number of path contribute 

Exactly at the critical point.  



DISTRIBUTION FUNCTION OF THE LOCAL FIELDS 

Experimental results 

Sacépé, Dubouchet, Chapelier, 

Sanquer, et al 

and theoretical expectations 

Sample slightly away 

from SI transition  

Sample very close to SI 

transition  

1. Gap is always large 

2. Height of coherence peak  

measures local order parameter 



PHASE DIAGRAM OF BETHE LATTICE MODEL 
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In the SI model the appearance of the sharp levels at low 

energies coincide with disappearance of order parameter. 

Very inhomogeneous phase is formed near critical point.  

←Disorder 



CONCLUSIONS 

 

 

1. Properties of the disordered superconducting films exhibiting SI transition ask 

for a different model than Josephson arrays.  

2. Good candidate is the model with no Coulomb repulsion (equivalent to magnet 

in random field) 

3. Solution of magnet in random field on Bethe lattice shows formation of a very 

inhomogeneous (non-self averaging) phase at low T close to quantum critical 

point. 

4. Insulating phase is characterized by zero level width at T=0 for sufficiently small 

g<g*. In the intermediate regime (close to „quantum critical point‟ gc) only low 

energy states E<E(g-gc) have zero width.  


