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The Larger Context 
Understanding Irreversibilty 
Understanding basic laws of transport 
Anomalous transport in low dimensions  

 
   How does the macroscopic irreversible 

behavior arise from the underlying 
molecular dynamics, which is reversible? 



 

 

 

     
How does the system approach equilibrium?  
    A non-equilibrium system typically undergoes a 

fast relaxation to a state of Local Equilibrium. The 
irreversible phenomena from this stage is 
described  in terms of phenomenological laws. 

     
    1. Ohm’s law  
                           JCharge = - σ grad V(r) 
    2. Fourier’s Law 
                           Jheat      = - κ grad T(r) 
    3. Fick’s law 
                           Jmatter  = - D grad C(r) 
  
   
 
   

 



 

 

 

 The notion of Local Equilibrium is that, 
each small region of space is in 
thermodynamic equilibrium, with local 
values of thermodynamic parameters like 
pressure, temperature density etc.  

 
  Then the state of the system can be 

described in terms of few thermodynamic 
variables which vary slowly in space and 
time. 

 
Do we understand the requirements on 

dynamics which will  establish states of 
local equilibrium? 

 
 



 

 

 

Boltzmann and Maxwell made the beginning 
by developing the kinetic theory and the 
Boltzmann Transport Equation for 
distribution functions and introducing the 
notions of mean free time and Molecular 
Chaos. 

 
These questions remain unanswered, and are 

being pursued  from several points of view. 
 
One-dimensional models have proved very  

useful to analyze transport problems, as in  
many cases theoretical and numerical 
analysis can be  taken much farther.  

 
 
 



 

 

 

Transport in low dimensions exhibits anomalous behavior. 
We consider the Fourier law. 
   J  = - κ grad T(r) 
                        dε/dt  + div J(r) = 0 
   ε(r,t) = C T(r, t)      C = specific heat 
                        dε/dt  =  κ/C grad2 ε(r, t)  
                        ε(q,t) = exp[-  κ t/(C q2 ) ] ε(q,0)  
                                 =  exp(- t/τq) ε(q,0)     τq = C/κq2 

Thus the life time of an energy fluctuation of wavevector q  
diverges as q goes to 0.   
Long wavelength fluctuations decay very slowly, and this  
has implications on equilibration in low dimensions. 
 



 

 

 

Due to energy conservation equilibration can 
take long time. 

 
  κ =  Σq Cq vq

2 τq         phonon modes 
      =  ∫kB v2 /q2  dq  
   
 Integral diverges in dimension d ≤ 2.  
 
Thus in low dimension the heat conduction 

processes cannot be described by the Fourier 
law.     



 

 

 

Fermi-Pasta-Ulam (1955) studied the model  
Η = Σi [1/2 m ui

2  + K/2 (ui – ui+1 )2  + 
            g/3 (ui – ui+1 )3  +   v/4 (ui – ui+1 )4 ] 
to understand the process of  thermal equilibration. 
 
This model has now been extensively used to study 

thermal conduction numerically. Thermal conduction 
is studied by putting two end atoms of the chain in 
contact with heat baths at different temperatures.  

An extensive survey of  the results is available in: S. 
Lepri, A. Livi and A. Politi,  Phys. Rep. 377, 1 (2003). 

 
The key result is:  the conductivity κ diverges with 

system length.  
 



 

 

 

 
For quartic potential    
   κ ∞ Lα     with α ≈ 0.38 to 0.42 
In earlier studies the value of α was found to be in  
this range for a large variation of parameters, a recent study  
by Mai et al (PRL 98, 184301, 2006) on longer chains claim  
a value of 1/3. 
 
Studies on other systems give exponent α as:  Toda lattice  0.4, 

Hard sphere gas 0.33, FPU chain with cubic nonlinearity 
0.44. 

 
To summarize there are some hints about the universality, and  
two values seem dominant, 2/5 and 1/3.  
 
 
Is there a truly universal behavior? 
 
How many universality classes are there? 
  



 

 

 

a)Hydrodynamical Arguments 
Narayan and Ramaswamy (PRL 89, 200601 (2002) studied a  
one-dimensional fluid by a renormalization group method,  
to find κ ∞ L1/3.    
This analysis has been further refined to take account of  
the coupling of thermal modes with viscosity (Lee-Dadswell  
et al., PRE72, 031202 (2005) ). They find two behaviors.  
If  Cp / Cv >1, α = 1/3, while if Cp / Cv = 1,  the behavior is  
more complex, but asymptotically α = ½. 
 
b) Mode-Coupling Method:   
Delfini et al. (PRE 73, 060201 (2006)) find answers that  
depend on the nonlinearity of the potential. For the cubic  
potential,  α = 1/3, while for quartic potential α = ½. 
 



 

 

 

From the microscopic point of view, the relaxation occurs 
due to collisions between modes. The phase space and 
hence the scattering probability is drastically reduced 
with the reduction of dimensionality. 

 
In a one-dimensional system, when two modes/particles 

with momenta p and q collide, due to momentum and 
energy conservation, the resulting modes after the 
collision,  would have to have the same momenta p and 
q. 

 
Pereverzev ( PRE 68, 056124 (2003))  used Boltzmann 

equation approach to study relaxation of the energy of 
a mode with wavevector q . This approach  gives a 
mode relaxation rate,  γq = τq

-1 ∞ q5/3  for the quartic 
potential. This implies α = 1/3 



 

 

 

We study the quantum version of the FPU chain. We utilize 
Kubo formula, which assumes a small thermal gradient 
and local equilibrium. But we can go beyond the 
Boltzmann approach in a systematic manner. 

 
  
 
In this formulation, key quantity is the dependence of 

phonon transport relaxation rate  
 
 
From this the finite-size results are obtained by limiting 

the time integral to a finite time of order of chain size L. 
This yields  
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One needs to include two features. Phonon life-time and vertex 
corrections. With just life-time correction, one obtains 
                           
                             κ = Σ vq

2 Cq τq   ,  τq
-1 = γq 

 
where Cq denotes mode specific heat and τq the phonon life time.  
τq is obtained from the phonon self energy Σ(q,ω). 



 

 

 

The self energy diagrams are shown below.  Fig. (a) is 
the basic four phonon collision term. For relaxation 
rate it leads to corrections that are nonsingular in 
wave-vector q.  The corrections arising from 
interaction renormalization are regular. 



 

 

 

Phonon Relaxation rate 
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The factor outside the sum is proportional to q2 , but the integral 
diverges as q goes to zero as q-1/3 . Thus, 
 
                                     γq ≈ T2  q5/3.  
 
Next we incorporate the vertex corrections. 

                                           γq = Im Σ.  
This expression involves energy and momentum conservation. The 
key point is that two conservations can happen only for Umklapp 
processes. 



 

 

 

 
We have numerically solved the equation for 
the vertex function, and find that the 
transport relaxation time or the current 
relaxation time also has the same wave 
vector dependence. Thus for the 

   quartic potential α=2/5.      
       

Now the question arises whether alpha has 
the same value for the other potentials. For 
example, the cubic potential is physically a 
larger term. So  we consider the cubic 
potential next.  
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The cubic case is very different from the quartic case. Physically the 
interaction requires generation of two phonons from one or vice 
versa. However, the energy dependence is such that  momentum 
and energy conservation cannot be satisfied simultaneously in 
such processes. Thus the basic diagrams give a zero answer. 

 
This calculation needs to be done self-consistently. This is done by 

using dressed propagators for internal lines. This leads to an 
integral equation for the relaxation rate γq 

 
 
 
 

      
 

  
 

 
This is a singular integral equation. If we set q=0 , the integral 

diverges if we take  γq~q2 . The self-consistent solution is 
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V5=(g/5! N3) Σv(k1,k2,k3,k4,k5)A(k1) A(k2)A(k3) A(k4) A(k5)   
v(k1,k2,k3,k4,k5)=Πi [γ(ki)/ω (ki)]  Δ (k1+k2+k3+k4+k5) 
 
Self-Energy Diagrams 
Γq ~ βωq

2 x collision integral 
 
The collision integral is singular for some processes. It turns out to be 

regular for the new diagrams (c). (b) gives same the contribution 
same as cubic. This remains true for higher order odd potentials. 
Thus there is a universal answer. 



 

 

 

Above arguments show that for all odd potentials to 
leading order in q, γq = q3/2 . Higher power odd 
potentials simply renormalize the cubic potential. The 
additional processes contribute terms of order q2. 
This gives  α = 1/3. 

 
Generalization to higher order even powers is more 

tedious, due to involvement of many umklapp 
processes. However our preliminary results indicate 
that only one scattering integral corresponding to 4th 
order potential is singular. The higher orders 
renormalize the 4th order vertex and contribute terms 
proportional to q2.      

This leads to  
 
 

3/5qq ∝γ



 

 

 

A systematic evaluation of the conductivity of a 
quantum chain with quartic nonlinearity has been 
made in the low phonon density limit. This 
calculation shows that thermal resistance arises due 
to Umklapp scattering of phonons.  

 
The phonon relaxation rate γq goes as q5/3 and 
conductivity diverges with chain length  as L2/5. 
Preliminary results show this to be true for all even 
potentials. 

 
We have also considered chains with nonlinear 
potentials of odd power. For such potentials, we find 
a universal behavior. γq goes as q3/2 and conductivity 
diverges with chain length  as L1/3. 
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 Second law of Thermodynamics 

W  = No. of microscopic states for a given set of 
macroscopic parameters like energy, volume, 
magnetization etc. 
 
Probability of a state with a given set of macroscopic or 
thermodynamic parameters is proportional to W. 

 
 

S = kB ln W 

The irreversibility is understood by introducing the 
thermodynamic attribute of Entropy for the equilibrium states 
of the system. When the state changes the Entropy increases, 
except when the change is thermodynamically reversible. 
Boltzmann provided microscopic understanding of Entropy 
and the Second law 

 

 



 

 

 
      Irreversibility : Configurations of lower 

probability go over to configurations of 
higher probability 

    low entropy state                        high entropy 
state 

    Prob. Proportional to (δV/V)N 
    
 
 
   Can we not reverse the motions to go from 

right state to the left state? This is permitted 
by time reversal. It is possible, but highly 
improbable for a large system. 

    Thus the 2nd law is not certain, but it is 
overwhelmingly probable for large systems. 

 
 

 



 

 

 

While for equilibrium,  Statistical Mechanics provides 
the connection between Hamiltonian and thermodynamics, 
Non-equilibrium phenomena is much more difficult to 

derive 
from basic dynamical laws. 
 
Have these phenomenological laws, like Fourier’s law, 

been 
derived starting from microscopic dynamics? Such 

transport  
laws require the establishment of  local equilibrium. 
 
Equilibrium arises due to exchange of energy, momentum 

etc.  
between degrees of freedom due to their interaction. For  
example if a particle with large(small) velocity is injected 

in a  
gas it loses(gains) its excess(deficit) energy above (below)  
the equilibrium value, by colliding with other particles. 

Only  
if  this process occurs sufficiently fast and happens in a  
small enough region, would we have local equilibrium. 
 

While for equilibrium,  Statistical Mechanics provides 
the connection between Hamiltonian and thermodynamics, 
Non-equilibrium phenomena is much more difficult to 

derive 
from basic dynamical laws. 
 
Have these phenomenological laws, like Fourier’s law, 

been 
derived starting from microscopic dynamics? Such 

transport  
laws require the establishment of  local equilibrium. 
 
Equilibrium arises due to exchange of energy, momentum 

etc.  
between degrees of freedom due to their interaction. For  
example if a particle with large(small) velocity is injected 

in a  
gas it loses(gains) its excess(deficit) energy above (below)  
the equilibrium value, by colliding with other particles. 

Only  
if  this process occurs sufficiently fast and happens in a  
small enough region, would we have local equilibrium. 
 



 

 

 

 
Studies on other systems give exponent α as:  Toda lattice  

0.4,  
Hard sphere gas 0.33, FPU chain with cubic nonlinearity 

0.44. 
 
To examine the robustness of these exponent values for  
vibrational chains, we studied a chain with second-

neighbour  
couplings. We  found a value of  α = 0.4 at small coupling 

but  
the value rises as the coupling strength increases. This  
is surprising as the second-neighbour coupling only  
changes the dispersion of the phonon. The certainity of  
numerical results is limited by the size of the simulation. 
 
To summarize there are some hints about the universality, 

and  
two values seem dominant, 2/5 and 1/3. Is there a truly  
universal behavior? 
How many universality classes are there? 
 
 



 

 

 

Theoretical Approaches 
a) Mode-Coupling Method: Constructs  a nonlinear 

equation for the mode Correlation function,  G(q,,t). The 
recent calculation by Delfini et al. (Phys. Rev. E73, 
060201) 

       gives answers that depend on the nonlinearity of the 
potential. For the cubic potential, 

                 G(q ,t) ≈ exp (-bq2  t4/3  ) 
                        α=1/3    (τq-1 ∞ q3/2),      
        while for the quartic potential 

G(q ,t) ≈ exp (-bq2  t  ) 
                α=1/2     (τq-1 ∞ q 2),  

. A fractional value of α implies a non-analytic wave vector 
dependence of the relaxation rate of the mode   γq  = τq

-1 
∞ qβ  where  β=1/(1-α). Here  β=5/3. 

 
 



 

 

 

Introduction 
Survey of the numerical results 
Theoretical results for the classical chain 
Quantum chain 

      a. Conductivity for the quartic potential 
    b. Mode relaxation for the cubic potential 
      c. Universality for the odd potentials 
   Summary 
     
 
 



 

 

 

Boltzmann equation approach: Studies 
relaxation of the energy of a mode with 
wavevector q .  Pereverzev,  Phys. Rev. E68, 
056124 (2003) This approach  gives a mode 
relaxation rate,  γq = τq

-1 ∞ q5/3  for the quartic  
nonlinearity    

But the mechanism is very different from mode-
coupling theory. Here the result comes from the 
study of mode relaxation due to scattering from 
other modes. Umklapp process is responsible 
and the collision integral has a singularity. 



 

 

 

A low density expansion is made by evaluating U in a ladder 
approximation. 



 

 

 


