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V, — typical magnitude of the random potential.

R, — correlation radius, (hZ/ng) =E, — correlation energy.

N

1. V, <E E,

Consider a particle with energy E <« E,.

k =v2mE/n? <1/ R, — kR, <1 — white noise limit.

In the Born approximation, the scattering crossection (in 3D) on a typical

2
barrier (or well) is o ~ (Voj R(‘)2
E,

R (m) 1
The mean free path | ~ = ~( j



kl>1 —» E>»V,|—| =¢

lu — chemical potential of the BEC.

H =&, — coherent weakly disordered BEC.
U< E. — condensate droplets, or localized bosons.
y . m .
The critical density n -~-——¢ (a — scattering length )
C hZa C

This picture is confirmed by an approach starting with the low density limit
and tracing the interaction-induced delocalization.

B. I. Shklovskii, Semiconductors (St. Petersburg), 42, 927 (2008).

G. Falco, T. Nattermann and V. Pokrovsky, PRB 80, 104515 (2009).



For energy E~V0
A’k?/m ~V, —> kR, ~ N,/E, > 1

On the classical level the problem reduces to that of percolation.

E, — percolation threshold.

E,>E, — "quantum percolation"threshold.

For U< E;O — isolated lakes of condensate.

For y> Ep — coherent BEC.



Free expansion of a BEC
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At t=0 the condensate is released from the trap and it starts expanding according to:

2
iha—qj:—h—vzww V[ ¥
ot 2m
W (r,t) =/n(F,t) exp[iS(F,1)], V:%VS

—

N, divn = 0, m@-FV(lsz +gn)=0
ot ot 2

Solution (self-similar):

. ul r’ L b
n(r,t)=——(1- ), v(r,t)=—r
b* " b%R? b
b=w?/b*, b(0) =1, b(0) = 0.
At t= %E t,  W(F,t) = Jn(F,1) exp(ir’/a2) = d(F).

For 1> 1, b=t V=r/t -Linear expansion.



Expansion in the presence of disorder
'

For t>t,
trap
2 \ fu
in 0y~ ey y (r)¥ 7 Vo
ot 2m
Y(r,t,) = o(r) - the initial condition.
Reset t, backtoO. Y(r,t) = J‘G(F’, R,t)q)(ﬁ)

(7, =n(,t) = [dR[ d°%k Py, (F,RHW (K, R).
P.o (T, R,t) - Quanumdifiusionkemel. & (K) = 7%k ?/2m

W (IZ, ﬁ) - Wigner function corresponding to (I)(F_é)



In the long time, large distance limit

- d°k  ~ - _

(0 = | 5 1P Py ()
Ci)(IZ) — Fourier transform of @(ﬁ)

— 1 —r?/4D,t
For e>>¢,, P.(Ft)= =5 € a
(47D,t)
For e<eg¢,, P.(F,t—>x)= ie_”f.
Ay

c(e) ~ (e, —&) .
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FIG. 2: Atomic column density after planar expansion of an
ultra-cold gas in an anisotropic speckle potential. a: Image
after 50ms of expansion. b,c: Integrated density along the
two major axes. The plain dots {open squares) correspond to
50ms (200ms) of expansion.
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FIG. 2 (color online). Profiles of the dynamic part of the

N| E 3/2 average atomic density obtained from the self-consistent theory

__floc __ (—C) ( for E << lLl ) of localization (solid lines). The time is given in units of 7,4

N C defined by Eq. (4). The dashed lines show 1/t asymptotes. At a

,Ll given ratio of mobility edge €. and chemical potential g,

Si(r, 1)r /N for different r (different colors) fall on a universal

curve. For clarity, the curves corresponding to €./ = 1 and 10

are shifted downwards by 1 and 2 units, respectively. The inset

shows the complete atomic densities ri(r, t) obtained by adding
o shown in the main plot and 7i(r, o¢) of Fig. 1.

S. Skipetrov, A. Minguzzi, B. van Tiggelen and B.S.
PRL 100, 165301 (2008).



Two comments about expansion of a Fermi gas,
In a disordered potential.

1. The average density

<A(F,t)> =[dR[d% P, (F,RHOW(K,R)

21,2 2p?2
we_ 1 ofg MK _moR
(27h) m 2

*The shape of cloud, in the long time large distance limit, is the same
as for the BEC in the Gross-Pitaevskii approximation.

2. Even in the absence of disorder the density pattern, obtained in a single

image, will look noisy and “grainy”.  A. Legget, Rev. Mod. Phys. 73, 307 (2001).
E. Altman, E. Demler, M. Lukin, PRA 70, 013603 (2004).

* “Atomic Speckles” in the presence of disorder.



Free expansion of a BEC from a disordered trap

Strongly anisotropic BEC (quasi 1D)

Radial confinement V(p) = %ma)fpz, ho, << u

Axial confinement is neglected but there is a potential V(z)

Example: V(z) =V,cosk,z
assume kja, <<1, a, = \/2/1/ Me?
. 1 1 2 2
In equilibrium no(p,Z) :—(y—V(z)—Ema)lp )
g
At t=0 all potentials are switched off and the condensate expands according to:
on . , _ oV 1 . h
—+div(nv)=0, m—+V(=mv°+gn)=0 V=—V0O
ot ( ) ot (2 an) ( m )

Initial conditions: n=n,(p,2), v =0.



The first stage of the expansion, t<t, =1 w, is dominated by

the nonlinearity: rapid radial expansion and, in addition,

L VO srctanot > 0@)= -~ V()
o, 0z 2hw,

Vz (Z,t) — m

For |®(z)|<<1 -only small effects
D. Clement, P. Bouyer, A. Aspect, L. Sanchez- Palencia PRA 77, 033631 (2008).

We consider |10(2) |>1 -large effects, “atomic caustics”

The wave function factorizes as Y(p,z,t)=D(p,Dw(z,1).

lw(z,t) [ gives the density at point z, normalized by the radial factor |®(z,t) [

The function ~ W(Z,t)  obeys:
.. Oy he 0%y
1h— =— .

ot 2m 0z
w(z,1,) = exp(i0(z)).

- with the initial condition



m Im . m o
Z,1 =,/ dz'exp[—(z—=2")* +i®(z))] = / dz'eie(z'2h)
vz 27ziht-“ p[th( )" +16(2)] zﬂiht.[

In full analogy with optics:

540(; ’|Z’t) =0 —equation for the rays of atoms
Z
2 1
0 ¢(§§ l,zz,t) =0 - condition for caustics.

Example: @(Z) = @0 COS kOZ

1 .
L5 KOl ——~=C0sk,z
- nk2e, t
t * m . . ; ) )
— -characteristic time for caustic formation.

hk;®,
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FIG. 1: Paths z(¢) followed within the geometrical optics approxi-
mation by atoms expanding from a condensate with an mmitial phase
#(z) = o cos(z).

Density at caustics is controlled by the third derivative of the phase and is

i 1/3
proportional to  ®;".

There is also a more singular caustic (cusp), with density proportional to ®é/2.
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1D GAS, MANY BODY CORRELATIONS.

So far we assumed the condition £/ >> ha)L — nafa >>1
2 :
In the opposite case, naLa < ]_, the problem becomes strictly

one-dimensional: In equilibrium all atoms reside in the ground state, Zo(p)

of the harmonic oscillator. Many body correlations become important.

When the gas is released from the trap, the radial expansion will be governed not
by the interaction but by the zero point energy associated with radial motion.

Phase imprinting can be done with the help of a short potential pulse:

h
V(z,t)=——0(2), —7<t<O.
T
(the phase can be deterministic or random function of z)

The radial part of the wave function, at t=0, is Hlo(p,-)-
I

The axial part is Y(z,,...2y;t=0) = exp[iZ@(Zj)] D,(z,,....2y),
j

where CI)O IS the ground state, prior to the action of the pulse.



At time t=0, just after the phase has been impressed, the trapping potential is
switched off and the gas undergoes radial expansion. The z-dependent part of the

manybody wavefunction evolves according to

a‘{”(Zl, ..... ZN;t) B N B #2 ) o2 |
ot {Z[ )az?}‘P(zl,....zN,t),

o\ 2m

=
I

with the initial condition ¥Y(z,,...2\;t=0) = exp[iZ@(Zj)] D,(z,,....2y)
i

We are interested in the one-dimensional , z-dependent part of the particle density

n(z,t)= NJOL| ¥(z,2,..2;t) [ dz,...dz,,

%F(z,t).

In second quantized form

F(z,t)=ﬁ<w|&*(z,t>&(z,t> Py,



F(20=[ 216, n(p)

n(p) = [zt (D)™

G, (2,t) = ,/27[ . jdqexp[z—m(z $): +i0($) —ipsT.

In the mean field approach n( p) = 272'5( p) and Gp(Z,t)

reduces to w(z,1) considered previously (mean field).

In the interacting gas the conditions for caustics are:

1 .
@(1)/35/ Ro >1 ”1R0®81/3 >1 E= a—nl -healing length.
Weak interactions: f = nl‘ 1 and caustics can be formed.

Strong interactions (Tonks limit): f ~ nl‘l No caustics.



