Cold atoms in the presence of disorder and interactions

Collaboration:
A. Minguzzi, S. Skipetrov, B. van-Tiggelen (Grenoble),
P. Henseler (Bonn), J. Chalker (Oxford),
L. Beilin, E. Gurevich (Technion).
PRL 99, 060602 (2007); 100, 165301 (2008).
PRA 77, 033624 (2008); 80, 013603 (2009); 81, 033612 (2010).

Recent reviews:
L. Fellani, C. Fort and M. Inguscio, Advances in Atomic, Molecular and Optical Physics 56, 119 (2008).
A. Aspect and M. Inguscio, Physics Today 62, 30 (2009).
L. Sanchez-Palencia and M. Lewenstein, Nature Physics 6, 87 (2010).

Random Speckle Potential

$I(\vec{r})$ - Light intensity at point \vec{r} in the observation plane

$$
\langle I(\vec{r}) I(\vec{r}+\Delta \vec{r})\rangle=\langle I(\vec{r})\rangle^{2}\left[1+4\left(\frac{J_{1}\left(\Delta r / R_{0}\right)}{\Delta r / R_{0}}\right)^{2}\right]
$$

$R_{0}=\lambda z / \pi D \quad$ - correlation radius of the random potential. in the z-direction, it is of order $\lambda(z / D)^{2}$.

The potential acting on the atoms $\quad V(\vec{r}) \propto I(\vec{r})$.

$$
\langle\delta V(\vec{r}) \delta V(\vec{r}+\Delta \vec{r})\rangle=V_{0}^{2}\left(\frac{J_{1}\left(\Delta r / R_{0}\right)}{\Delta r / R_{0}}\right)^{2}
$$

$V_{0}-$ typical magnitude of the random potential.
$R_{0}-$ correlation radius, $\left(\hbar^{2} / m R_{0}^{2}\right)=\mathrm{E}_{0}-$ correlation energy.

$$
\text { 1. } V_{0} \ll E_{0}
$$

Consider a particle with energy $E \ll E_{0}$.

$$
k=\sqrt{2 m E / \hbar^{2}} \ll 1 / R_{0} \rightarrow k R_{0} \ll 1-\text { white noise limit. }
$$

In the Born approximation, the scattering crossection (in 3D) on a typical
barrier (or well) is

$$
\sigma \sim\left(\frac{V_{0}}{E_{0}}\right)^{2} R_{0}^{2}
$$

The mean free path

$$
I \sim \frac{R_{0}^{3}}{\sigma} \sim\left(\frac{\hbar^{2}}{m}\right)^{2} \frac{1}{V_{0}^{2} R_{0}^{3}}
$$

$$
k l \gg 1 \quad \rightarrow \quad E \gg V_{0}\left(\frac{V_{0}}{E_{0}}\right)^{3} \equiv \varepsilon_{c}
$$

$\mu-$ chemical potential of the BEC .
$\mu \gg \varepsilon_{c}-\quad$ coherent weakly disordered BEC.
$\mu \ll \varepsilon_{c}-\quad$ condensate droplets, or localized bosons.
The critical density $\quad n_{c} \sim \frac{m}{\hbar^{2} a} \varepsilon_{c} \quad(a-$ scattering length $)$

This picture is confirmed by an approach starting with the low density limit and tracing the interaction-induced delocalization.
B. I. Shklovskii, Semiconductors (St. Petersburg), 42, 927 (2008).
G. Falco, T. Nattermann and V. Pokrovsky, PRB 80, 104515 (2009).
2. $V_{0} \gg E_{0}$

For energy $E \sim V_{0}$
$\hbar^{2} k^{2} / m \sim V_{0} \rightarrow k R_{0} \sim \sqrt{V_{o} / E_{0}} \gg 1$
On the classical level the problem reduces to that of percolation.
$E_{p}-$ percolation threshold.
$E_{p}^{\prime}>E_{p}-$ "quantum percolation" threshold.
For $\mu<E_{p}^{\prime}-$ isolated lakes of condensate.
For $\mu>E_{p}^{\prime}-\quad$ coherent BEC .

Free expansion of a BEC

$$
\begin{aligned}
& V_{\text {trap }}(r)=\frac{1}{2} m \omega^{2} r^{2} \\
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V_{\text {trap }} \Psi+g|\Psi|^{2} \Psi=\mu \Psi
\end{aligned}
$$

$$
\left|\Psi^{2}(r)\right|=n(r)=\frac{\mu-V_{t r a p}}{g}=\frac{\mu}{g}\left(1-\frac{r^{2}}{R_{0}^{2}}\right)
$$

$$
R_{0}^{2}=\frac{2 \mu}{m \omega^{2}}, \quad \mu \gg \hbar \omega \Rightarrow R_{0} \gg \sqrt{\frac{\hbar}{m \omega}} \equiv a_{0}
$$

$$
\Psi(\vec{r}, t=0)=\sqrt{n(r, 0)}=\sqrt{\frac{\mu}{g}\left(1-\frac{r^{2}}{R_{0}^{2}}\right)}
$$

At $t=0$ the condensate is released from the trap and it starts expanding according to:

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+g|\Psi|^{2} \Psi \\
& \Psi(\vec{r}, t)=\sqrt{n(\vec{r}, t)} \exp [i S(\vec{r}, t)], \quad \overrightarrow{\mathrm{v}}=\frac{\hbar}{m} \nabla S \\
& \frac{\partial n}{\partial t}+\operatorname{div} n \overrightarrow{\mathrm{v}}=0, \quad m \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}+\nabla\left(\frac{1}{2} m v^{2}+g n\right)=0
\end{aligned}
$$

Solution (self-similar):

$$
\begin{array}{lll}
n(\vec{r}, t)=\frac{\mu}{g} \frac{1}{b^{3}}\left(1-\frac{r^{2}}{b^{2} R_{0}^{2}}\right), & \overrightarrow{\mathrm{V}}(\vec{r}, t)=\frac{\dot{b}}{b} \vec{r} \\
\ddot{b}=\omega^{2} / b^{4}, & b(0)=1, & \dot{b}(0)=0
\end{array}
$$

$$
\text { At } \quad t=\frac{1}{\omega} \equiv t_{0} \quad \Psi(\vec{r}, t) \simeq \sqrt{n(\vec{r}, t)} \exp \left(i r^{2} / a_{0}^{2}\right) \equiv \Phi(\vec{r}) \text {. }
$$

$$
\text { For } t>t_{0} \quad \mathrm{~b}=\omega \mathrm{t} \quad \overrightarrow{\mathrm{v}}=\vec{r} / t \quad \text {-Linear expansion. }
$$

Expansion in the presence of disorder
For $t>t_{0}$

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V(\vec{r}) \Psi
$$

$\Psi\left(\vec{r}, t_{0}\right)=\Phi(\vec{r}) \quad-\quad$ the initial condition.

Reset t_{0} back to 0 .

$$
\Psi(\vec{r}, t)=\int G(\vec{r}, R, t) \Phi(\vec{R})
$$

$\overline{|\Psi(\vec{r}, t)|^{2}} \equiv \bar{n}(\vec{r}, t) \simeq \int d \vec{R} \int d^{3} k P_{\varepsilon(k)}(\vec{r}, \vec{R}, t) W(\vec{k}, \vec{R})$.
$P_{\varepsilon(k)}(\vec{r}, \vec{R}, t) \quad$ - Quantum diffusion kernel. $\quad \varepsilon(k)=\hbar^{2} k^{2} / 2 m$
$W(\vec{k}, \vec{R}) \quad$ - Wigner function corresponding to $\quad \Phi(\vec{R})$.

In the long time, large distance limit

$$
\bar{n}(\vec{r}, t) \simeq \int \frac{d^{3} k}{(2 \pi)^{3}}|\tilde{\Phi}(\vec{k})|^{2} P_{\varepsilon(k)}(\vec{r}, t) .
$$

$\tilde{\Phi}(\vec{k})-\quad$ Fourier transform of $\quad \Phi(\vec{R})$.

For $\varepsilon \gg \varepsilon_{c}, \quad P_{\varepsilon}(\vec{r}, t)=\frac{1}{\left(4 \pi D_{\varepsilon} t\right)^{3 / 2}} e^{-r^{2} / 4 D_{\varepsilon} t}$.
For $\varepsilon<\varepsilon_{c}, \quad P_{\varepsilon}(\vec{r}, t \rightarrow \infty)=\frac{1}{4 \pi r} e^{-r / \xi}$.
$\xi(\varepsilon) \sim\left(\varepsilon_{c}-\varepsilon\right)^{-\nu}$.

Anisotropic 2D Diffusive Expansion of Ultracold Atoms in a Disordered Potential

M. Robert-de-Saint-Vincent, J.-P. Brantut, ${ }^{\dagger}$ B. Allard, T. Plisson, L. Pezzé, L. Sanchez-Palencia, A. Aspect, T. Bourdel,* and P. Bouyer

Laboratoire Charles Fabry de l'Institut d'Optique, Univ. Paris Sud, CNRS, campus polytechnique RD128, 91127 Palaiseau France (Received 2 April 2010; published 2 June 2010)

FIG. 2: Atomic column density after planar expansion of an ultra-cold gas in an anisotropic speckle potential. a: Image after 50 ms of expansion. b,c: Integrated density along the two major axes. The plain dots (open squares) correspond to 50 ms (200 ms) of expansion.

$$
\begin{aligned}
& \bar{n}(\vec{r}, t \rightarrow \infty)=f\left(\frac{\varepsilon_{c}}{\mu}\right) \frac{N}{r^{3}}\left(\frac{l}{r}\right)^{1 / v} . \\
& f(x) \sim x^{3 / 2} \quad(x \ll 1), \\
& f(x) \sim \text { const } \quad(x \gg 1) \\
& \frac{\mathrm{N}_{\text {loc }}}{N} \sim\left(\frac{\varepsilon_{c}}{\mu}\right)^{3 / 2} \quad\left(\text { for } \varepsilon_{c} \ll \mu\right)
\end{aligned}
$$

FIG. 2 (color online). Profiles of the dynamic part of the average atomic density obtained from the self-consistent theory of localization (solid lines). The time is given in units of $t_{\text {arrival }}$ defined by Eq. (4). The dashed lines show $1 / t$ asymptotes. At a given ratio of mobility edge ϵ_{c} and chemical potential μ, $\delta \bar{n}(\mathbf{r}, t) r^{3} / N$ for different r (different colors) fall on a universal curve. For clarity, the curves corresponding to $\epsilon_{c} / \mu=1$ and 10 are shifted downwards by 1 and 2 units, respectively. The inset shows the complete atomic densities $\bar{n}(\mathbf{r}, t)$ obtained by adding $\delta \bar{n}$ shown in the main plot and $\bar{n}(\mathbf{r}, \infty)$ of Fig. 1.
S. Skipetrov, A. Minguzzi, B. van Tiggelen and B.S.

PRL 100, 165301 (2008).

Two comments about expansion of a Fermi gas, in a disordered potential.

1. The average density

$$
\begin{aligned}
& \overline{<\hat{n}(\vec{r}, t)>} \simeq \int d \vec{R} \int d^{3} k P_{\varepsilon(k)}(\vec{r}, \vec{R}, t) W(\vec{k}, \vec{R}) \\
& W=\frac{1}{(2 \pi \hbar)^{d}} \Theta\left(E_{F}-\frac{\hbar^{2} k^{2}}{2 m}-\frac{m \omega^{2} R^{2}}{2}\right)
\end{aligned}
$$

-The shape of cloud, in the long time large distance limit, is the same as for the BEC in the Gross-Pitaevskii approximation.
2. Even in the absence of disorder the density pattern, obtained in a single image, will look noisy and "grainy". A. Legget, Rev. Mod. Phys. 73, 307 (2001).
E. Altman, E. Demler, M. Lukin, PRA 70, 013603 (2004).

* "Atomic Speckles" in the presence of disorder.

Free expansion of a BEC from a disordered trap

Strongly anisotropic BEC (quasi 1D)
Radial confinement

$$
V(\rho)=\frac{1}{2} m \omega_{\perp}^{2} \rho^{2}, \quad \hbar \omega_{\perp} \ll \mu
$$

Axial confinement is neglected but there is a potential $V(z)$
Example:

$$
V(z)=V_{0} \cos k_{0} z
$$

assume

$$
k_{0} a_{\perp} \ll 1, \quad a_{\perp}=\sqrt{2 \mu / m \omega_{\perp}^{2}}
$$

In equilibrium

$$
n_{0}(\rho, z)=\frac{1}{g}\left(\mu-V(z)-\frac{1}{2} m \omega_{\perp}^{2} \rho^{2}\right)
$$

At $t=0$ all potentials are switched off and the condensate expands according to:

$$
\begin{array}{rlrl}
\frac{\partial n}{\partial t}+\operatorname{div}(n \overrightarrow{\mathrm{v}})=0, \quad m \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}+\nabla\left(\frac{1}{2} m v^{2}+g n\right)=0 & \left(\overrightarrow{\mathrm{v}}=\frac{\hbar}{m} \nabla \Theta\right) \\
\text { Initial conditions: } & n=n_{0}(\rho, z), & \mathrm{v}=0
\end{array}
$$

The first stage of the expansion, $\quad t<t_{0} \simeq 1 / \omega_{\perp}, \quad$ is dominated by
the nonlinearity: rapid radial expansion and, in addition,
$\mathrm{v}_{\mathrm{z}}(z, t)=\frac{1}{m \omega_{\perp}} \frac{d V(z)}{d z} \arctan \omega_{\perp} t \quad \rightarrow \quad \Theta(z)=\frac{\pi}{2 \hbar \omega_{\perp}} V(z)$.
For $|\Theta(z)| \ll 1 \quad$-only small effects
D. Clement , P. Bouyer, A. Aspect, L. Sanchez- Palencia PRA 77, 033631 (2008).

We consider $\quad|\Theta(z)|>1 \quad$-large effects, "atomic caustics"
The wave function factorizes as $\quad \Psi(\rho, z, t)=\Phi(\rho, t) \psi(z, t)$.
$|\psi(z, t)|^{2} \quad$ gives the density at point z, normalized by the radial factor $|\Phi(z, t)|^{2}$
The function $\psi(Z, t)$ obeys:

$$
\begin{aligned}
& i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial z^{2}}, \text { with the initial condition } \\
& \psi\left(z, t_{0}\right)=\exp (i \Theta(z))
\end{aligned}
$$

$$
\psi(z, t)=\sqrt{\frac{m}{2 \pi i \hbar t}} \int d z^{\prime} \exp \left[\frac{i m}{2 \hbar t}\left(z-z^{\prime}\right)^{2}+i \Theta\left(z^{\prime}\right)\right]=\sqrt{\frac{m}{2 \pi i \hbar t}} \int d z^{\prime} e^{i \varphi\left(z^{\prime}, z, t\right)}
$$

In full analogy with optics:

$$
\begin{gathered}
\frac{\partial \varphi\left(z^{\prime}, z, t\right)}{\partial z^{\prime}}=0 \text { - equation for the rays of atoms } \\
\frac{\partial^{2} \varphi\left(z^{\prime}, z, t\right)}{\partial z^{\prime 2}}=0-\text { condition for caustics. }
\end{gathered}
$$

Example: $\quad \Theta(z)=\Theta_{0} \cos k_{0} z$

$$
\begin{aligned}
& z=z^{\prime}-\frac{k_{0} \Theta_{0} \hbar}{m} t \\
& t^{*}=\frac{m}{\hbar k_{0}^{2} \Theta_{0}^{2} \Theta_{0}} \frac{m}{t}=\cos k_{0} z^{\prime} \\
& \text {-characteristic time for caustic formation. }
\end{aligned}
$$

FIG. 1: Paths $z(t)$ followed within the geometrical optics approximation by atoms expanding from a condensate with an initial phase $\theta(z)=\theta_{0} \cos (z)$.

Density at caustics is controlled by the third derivative of the phase and is proportional to $\Theta_{0}^{1 / 3}$.
There is also a more singular caustic (cusp), with density proportional to
$\Theta_{0}^{1 / 2}$.

Random potential with correlation length $\quad R_{0}=15 \mu \mathrm{~m} . \quad \frac{\mu}{\hbar \omega_{\perp}}=5.6$
(c), (d) - no disorder.
(e), (f) - $\quad V_{0}=0.3 \mu \Rightarrow \Theta_{0}=\frac{\pi}{2 \hbar \omega_{\perp}} V_{0} \approx 2.6$
(g), (h) -
$V_{0}=0.5 \mu \Rightarrow \Theta_{0}=\frac{\pi}{2 \hbar \omega_{\perp}} V_{0} \approx 4.4$
(i), (j) $-\quad V_{0}=\mu \quad$ (beginning of fragmentation)

1D GAS, MANY BODY CORRELATIONS.

So far we assumed the condition $\mu \gg \hbar \omega_{\perp} \Rightarrow n a_{\perp}^{2} a \gg 1$
In the opposite case, $\quad n a_{\perp}^{2} a<1, \quad$ the problem becomes strictly one-dimensional: In equilibrium all atoms reside in the ground state, $\quad \chi_{0}(\rho)$ of the harmonic oscillator. Many body correlations become important.

When the gas is released from the trap, the radial expansion will be governed not
by the interaction but by the zero point energy associated with radial motion.
Phase imprinting can be done with the help of a short potential pulse:
$V(z, t)=-\frac{\hbar}{\tau} \Theta(z), \quad-\tau<t<0$.
(the phase can be deterministic or random function of z)
The radial part of the wave function, at $\mathrm{t}=0$, is

$$
\prod_{j} \chi_{0}\left(\rho_{j}\right) .
$$

The axial part is

$$
\Psi\left(z_{1}, \ldots . z_{N} ; t=0\right)=\exp \left[i \sum_{j} \Theta\left(z_{j}\right)\right] \Phi_{0}\left(z_{1}, \ldots . z_{N}\right),
$$

where
Φ_{0}
is the ground state, prior to the action of the pulse.

At time $t=0$, just after the phase has been impressed, the trapping potential is switched off and the gas undergoes radial expansion. The z-dependent part of the manybody wavefunction evolves according to

$$
i \hbar \frac{\partial \Psi\left(z_{1}, \ldots . . z_{N} ; t\right)}{\partial t}=\left[\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m}\right) \frac{\partial^{2}}{\partial z_{j}^{2}}\right] \Psi\left(z_{1}, \ldots . z_{N} ; t\right)
$$

with the initial condition

$$
\Psi\left(z_{1}, \ldots . z_{N} ; t=0\right)=\exp \left[i \sum_{j} \Theta\left(z_{j}\right)\right] \Phi_{0}\left(z_{1}, \ldots . z_{N}\right)
$$

We are interested in the one-dimensional, z-dependent part of the particle density

$$
n_{1}(z, t)=N \int_{0}^{L}\left|\Psi\left(z, z_{2} \ldots z_{N} ; t\right)\right|^{2} d z_{2} \ldots . . d z_{N} \equiv \frac{N}{L} F(z, t) .
$$

In second quantized form

$$
F(z, t)=\frac{L}{N}\langle\Psi| \hat{\psi}^{+}(z, t) \hat{\psi}(z, t)|\Psi\rangle .
$$

$$
F(z, t)=\int \frac{d p}{2 \pi}\left|G_{p}(z, t)\right|^{2} n(p)
$$

$$
n(p)=\frac{L}{N} \int d z\left\langle\hat{\psi}^{+}(z) \widehat{\psi}(0)\right\rangle e^{-i p z}
$$

$G_{p}(z, t)=\sqrt{\frac{m}{2 \pi i \hbar t}} \int d \zeta \exp \left[\frac{i m}{2 \hbar t}(z-\zeta)^{2}+i \Theta(\zeta)-i p \zeta\right]$.

In the mean field approach

$$
n(p)=2 \pi \delta(p) \quad \text { and } \quad G_{p}(z, t)
$$

reduces to $\psi(z, t) \quad$ considered previously (mean field).
In the interacting gas the conditions for caustics are:

$$
\Theta_{0}^{1 / 3} \xi / R_{0} \gg 1, \quad n_{1} R_{0} \Theta_{0}^{-1 / 3} \gg 1 \quad \xi=\frac{1}{\alpha n_{1}} \text {-healing length. }
$$

Weak interactions: $\quad \xi \gg n_{1}^{-1} \quad$ and caustics can be formed.
Strong interactions (Tonks limit): $\quad \xi \approx n_{1}^{-1} \quad$ No caustics.

