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Model 
Disorder and interactions. 

 
 
 
 
 

Transfer energies considered to lowest possible order 

H =
X
i

φini +
X
i>j

(ni −K)(nj −K)
ri,j

• ni = {0, 1} occupation number (very large U).
• φi ∈ [−W/2,W/2] random site energy.

• K compensation.

• 0 for energies, density of states, etc.
• 1 for conduction, relaxation, etc.
• No exchange terms. Degenerate with respect to spin.



  

Model 

Hopping probabilities. 
 

1-electron  transition rates     
 
 

2-electrons 
 

 
 
o Shortest possible transition rate. 
 

 

Γα,β = τ−10 Ξ2α,βe
−2
P

i,j
ri,j/ξmin{1, e−∆Eα,β/kT }

Γi,j = τ−10 e−2ri,j/ξmin{1, e−∆Ei,j/kT }

Ξα,β =
1
r1,3

+ 1
r2,4

− 1
r1,4

− 1
r2,3



  

Open question 
Are there long relaxation times that affect the conductance?  

 
 Role of many-electrons hopping ? 

 
Role of quantum effects? 

 
Mechanism for the establishment of an effective temperature 
in slow relaxation? 



  

         Effective temperature 

Somoza et al PRL(08) f(²i, t) ≈ fFD( ²i−μ
Teff (t)

)



  

P. W.  Anderson 
Nobel Lecture, 1977 

 



  

Master Equation in configuration space 

d ~p(t)

dt
= A · ~p(t)

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
  

α

Aαβ = Γαβ

Aαα = −
X
β 6=α

Γβα



  

Master Equation 
Store up to 200000 configurations.  
Construct            

o One electron transitions. 
o Many-electron transitions. 
 

Integrate numerically the set of differential equations. 
 

Diagonalize (only for a small number of configurations). 
 
 

 

A



  

N=1000, M=100000, T=0.002. 

Phonon temperature 

p(E) ∝ exp(−E/kT )



  

Renormalization procedure 

−Σ1 Γ12 · · · Γ1n · · ·
Γ21 −Σ2 · · · Γ2n · · ·
...

...
. . .

...
...

Γm1 Γm2 · · · −Σn · · ·
...

...
...

...
. . .

 

 

 

diagonalize 



  

  Renormalization procedure 
• Search for the largest pair: Γαβ + Γβα
• Assume that configurations α and β reach
equilibrium, with relaxation time τ = 1/(Γαβ + Γβα).

• Keep only one of them. Renormalize probabilities,
matrix elements and partition functions:

— p̃α = pα + pβ

— Γ̃αi = Γαi + Γβi

— Γ̃iα =
ZαΓiα+ZβΓiβ

Zα+Zβ

— Z̃α = Zα + Zβ



  

Eigenvalues 



  

Renormalized system 



  

N=1000, M=100000, T=0.002. 

Phonon temperature 
p(E) ∝ exp(−E/kT )



  

   Heating from low temperature 



  

N=1000,  2x105 configurations 
T=0.001 



  

Conductance 

N=500 
T=0.05 



  

Direct search for cluster  information 

Instead of calculating all low energy configurations, we 
directly search for configurations stable with respect one-
electron hops shorter than a given distance. 

 
We store up to 250000  “metastable” states.  

 
The range of energies increases by a factor 10. 



  

Two-electrons hops 

N=1000, T=0 



  

Valley stability 



  

Conclusions 

The Master Equation is an expensive but useful tool to get 
information hardly available from MonteCarlo. 

 The effective temperatures in glassy systems may be 
explained without  resorting to any thermalization 
mechanism. 

Many-electron hops are important in relaxation. Collective 
hops of several electrons may be necessary . 

The ME permits a possible implementation of  “some” 
quantum effects. 

 


