# Spins on Metals: Noise in SQUIDs and Spin Glasses





Clare Yu Zhi Chen

University of California, Irvine

## Noise Spectrum

Noise comes from fluctuations of some type. For example, let  $\delta M(t)$  be a fluctuation of time t. The autocorrelation function is



time

$$\psi_{M}(t) = \langle \delta M(t) \delta M(0) \rangle$$

The noise spectral density is proportional to the Fourier transform:

$$S_M(\omega) = 2\psi_M(\omega) = 2\int dt e^{i\omega t} \psi_M(t)$$

1/f noise dominates at low frequencies, and corresponds to

$$S_{M}(\omega) \square \frac{1}{\omega}$$

(Actually "1/f noise" refers to S(f) ~ 1/fa where a is approximately 1.)

# Quantum Computing and Qubits

Josephson junctions can be used to construct qubits.

- Major Advantage: scalability using integrated circuit (IC) fabrication technology.
- Major Obstacle: Noise and Decoherence

$$\Psi = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}e^{i\phi}|1\rangle$$

**Qubit wavefunction** 





Superconducting qubits begin to shine

J. M. Martinis et al., PRL 89, 117901 (2002).

# Flux Noise Is a Major Source of Noise and Decoherence in SQUIDs

Flux noise looks like fluctuating vortices or fluxoids in the SQUID, but that is not the source of flux noise.

#### 1/f Flux Noise in SQUIDs

[Wellstood *et al.*, APL **50** 772 ('87)]  $1/f^{\alpha}$  with 0.58 <  $\alpha$ < 0.80





Noise from SQUID(2) or  $I_{b1}$ Noise from  $I_{\Phi 1}$ Symmetric fluctuations in  $I_{01}$  &  $I_{02}$ ,  $R_1$  &  $R_2$ , or  $L_1$  &  $L_2$ Antisymmetric fluctuations in  $I_{01}$  and  $I_{02}$ Antisymmetric fluctuations in  $L_1$  and  $L_2$ Antisymmetric fluctuations in  $R_1$  and  $R_2$ Fluctuations in external magnetic field

Noise from substrate Noise from SQUID support Liquid helium in cell Heating effects

Motion of flux lines trapped in SQUID

#### Properties of source

Noise would not appear as flux noise Noise would depend on  $M_i$ . Noise would not appear as flux noise a

 $S_{\Phi}$  would scale as  $I^2$   $S_{\Phi}$  would scale as  $V^2$   $S_{\Phi}^{1/2}$  would scale as SQUID area Should depend on material Should depend on material Should change in absence of helium Should depend on power dissipated Should depend on material



"Universal" 1/f flux noise

Independent of : inductance materials geometry

Not due to fluctuating vortices (seen in wires too thin to have a vortex)

Mechanism was unknown

#### Flux Noise in SQUIDs

- Noise ~  $(1/f)^{\alpha}$  where  $0.5 < \alpha < 1$ .
- 1/f flux noise in SQUIDs is produced by fluctuating magnetic impurities.
- Paramagnetic impurities produce flux ~
   1/T on Al, Nb, Au, Re, Ag, etc.







Bluhm *et al. PRL* (2009)

Sendelbach et al. PRL (2008)

#### Evidence Indicates Spins Reside on Metal Surface



- Flux noise scales with surface area of the metal in the SQUID.
- Magnetic impurities in the bulk superconductor would be screened.
- Weak localization dephasing time  $\tau_{\phi}$  grows as T decreases (Bluhm *et al.*). If spin impurities in the bulk limited  $\tau_{\phi}$ ,  $\tau_{\phi}$  would saturate at low T (Webb).
- Concentration  $\sim 5 \times 10^{17}/\text{m}^2$  implies a spacing of  $\sim 1$  nm between impurities.
- May be due to states localized at the metal-insulator interface with magnetic moments (Choi *et al.*).

#### **Inductance Noise**

(Sendelbach et al., PRL 2009)

- 1/f inductance noise in SQUIDs driven by ac excitation current.
- Inductance is proportional to magnetic susceptibility.
- Inductance noise is correlated with flux noise.
- Implies magnetic impurities produce inductance and flux noise.







# **Spins May Interact Weakly via RKKY**





electrons

- Flux (susceptibility) goes as 1/T or  $1/(T-T_C)$ .
- If there is a  $T_C$ , estimate  $T_C \sim 50$  mK.
- Implies there may be weak interaction between spins.
- Faoro and Ioffe proposed that the spins interact via RKKY which is oscillating spin polarization of the conduction electrons  $(J_{RKKY} \sim \cos(2k_F r)/(2k_F r)^3)$
- RKKY leads to spin glass behavior.

## Interacting Spin Systems

We can model interactions between spins with the Hamiltonian *H*:

$$H = -\sum_{i>j} J_{ij} \overset{\mathbf{I}}{S}_{i} \overset{\mathbf{I}}{\mathsf{g}} \overset{\mathbf{I}}{\mathsf{S}}_{j}$$

As the system is cooled, there is a phase transition at  $T_C$  from a high temperature paramagnetic phase to a low temperature phase. At low temperatures (T <<  $T_C$ ) the spins are frozen in one of the following configurations:



Ferromagnet J > 0



Antiferromagnet I < 0



 $\begin{array}{cc} \text{Spin Glass} \\ \text{random} & \textbf{J}_{ij} \end{array}$ 

A spin glass is a collection of spins with random interactions between them.

#### Spin Glass Transition

$$H = -\sum_{i>j} J_{ij} \vec{S}_i \Box \vec{S}_j$$

- Spin coupling J<sub>ii</sub> random
- 2D Ising spin glass has T<sub>C</sub>=0
- 3D Ising spin glass has T<sub>C</sub> > 0
- 2<sup>nd</sup> order phase transition
- Specific heat and linear susceptibility do not diverge
- Nonlinear susceptibility  $\chi_{nl}$  diverges



$$M(H) = \chi H - \chi_{nl} H^3 + \dots$$

# RKKY Spin Glass

- Surface spins are probably in 2D
- Lower critical dimension of RKKY spin glass is 3 (Bray *et al.* 1986)
- No RKKY spin glass transition in 2D
- But a spin glass transition is possible for other types of interactions
- For example: random power law interactions (~  $1/r_{ij}^{\sigma}$ , d/2 <  $\sigma$  < d) can produce  $T_C > 0$  in d dimensions (Katzgraber and Young, 2003)

#### Do spins on metals act like a spin glass?

- Does  $\chi \sim 1/T$ ?
- Is flux noise in SQUIDs consistent with magnetization noise in a spin glass model?
- Is inductance noise in SQUIDs consistent with susceptibility noise in a spin glass model?
- (Inductance  $L \sim \chi$ )



#### Previous Experiments: Noise in Spin Glasses

- Spin glasses have low frequency magnetization noise S<sub>M</sub>(f) ~ 1/f (Ocio *et al.* 1986, Reim *et al.* 1986, Refregier *et al.* 1987).
- $S_M(f) \sim 1/f$  consistent with SQUID flux noise  $\sim 1/f$
- Maximum 1/f noise near T<sub>g</sub> (Refregier *et al.* 1987).

Reim *et al*. 1986



FIG. 1. Flux noise vs frequency for the detection system alone and for the spin-glass  $Eu_{0.4}Sr_{0.6}S$  at two different temperatures above and below  $T_f = 1.53$  K.



Refregier et al. 1987

#### Previous Theory: Noise in Spin Glasses

- $S_M(f)$  is magnetization noise.
- Infinite range (mean field) spin glass models:  $S_M(f) \sim (1/f)^{-\alpha}$  with  $\alpha \le \frac{1}{2}$  in the spin glass phase ( $T \le T_C$ ) (Kirkpatrick & Sherrington 1978, Ma & Rudnick 1978, Hertz & Klemm 1979, Sompolinsky & Zippelius 1982, Fischer & Kinzel 1984).
- Droplet model:  $S_M(f) \sim (\ln f)/f$  (Fisher & Huse 1988).
- Hierarchical Model:  $S_M(f) \sim 1/f$  (Weissman 1993).
- $S_M(f) \sim 1/f$  is consistent with 1/f flux noise

# Previous Monte Carlo Simulations: Noise in Spin Glasses

- 2D and 3D Monte Carlo simulations of ± J Ising spin glass model (McMillan 1983, Marinari *et al.* 1984, Sourlas 1986)
- All simulations were at  $T > T_C$
- High temperature magnetization noise is white
- As system is cooled,  $S_M(f) \sim 1/f$
- No calculations to compare with SQUID inductance noise



Fig. 2. —  $\ln S(\omega)$  (in arbitrary scale) versus  $\ln (\omega/\omega_{\min})$ , at T=1.0. Same features as in figure 1, but MC dynamics. The straight line is the slope of  $S(\omega) \sim 1/\omega$ .

2D Ising Spin Glass Marinari *et al.* (1984)

#### 2D and 3D Ising Spin Glass Simulations

$$H = -\sum_{\{i>j\}} J_{ij} S_i S_j$$

- ith spin  $S_i = -1$ , +1
- Nearest neighbor interactions
- 2<sup>nd</sup> Order Phase Transition in 3D
- $k_B T_C = 0.95 J (3D); T_C = 0 (2D)$
- Periodic boundary conditions
- P(J<sub>ij</sub>) is a Gaussian distribution
- Parallel tempering Monte Carlo simulations to reach equilibrium
- 3D:  $N = L^3$ , L = 4, 6, 8; 2D:  $N = L^2$ , L = 8, 16
- After equilibrating, time series  $1.5 \times 10^6$  Monte Carlo Steps per spin
- 200 samples for disorder average
- Obtain time series and noise spectra of magnetization.



### χ(T) and Φ(T) Consistent

Susceptibility: $\chi = N\sigma_M^2/kT$ 

Flux  $\Phi(T)$  ~ Magnetization M(T) ~ Susceptibility  $\chi(T)$  ~ 1/T









### $\chi(T)$ and $\Phi(T)$ Consistent

Susceptibility: $\chi = N\sigma_M^2/kT$ 

Flux  $\Phi(T) \sim Magnetization$  $M(T) \sim Susceptibility \chi(T) \sim$ 









#### 3D Magnetization and Flux Noise Consistent

- Low frequency M noise max at T<sub>C</sub> due to critical fluctuations
- Implies flux noise max identifies T<sub>c</sub>
- 1/f noise power spectrum
- $1/f^{\alpha}$  with  $\alpha \sim 1.02$  (simulations)
- $\alpha \sim 0.95$  (UCSB expt); 0.58<  $\alpha$ <0.80 (Wellstood *et al.*)





Frequency (Hz)

#### 2D Magnetization and Flux Noise Consistent

10<sup>2</sup>

- •1/f noise power spectrum
- (Wellstood et al.)



#### Inductance Noise

(Sendelbach et al., PRL 2009)

- 1/f inductance noise in SQUIDs driven by ac excitation current.
- Inductance is proportional to magnetic susceptibility.
- Inductance noise is correlated with flux noise.
- Implies magnetic impurities produce inductance and flux noise.





#### Phase Noise in Superconducting Resonators

(Gao et al., Caltech, Appl. Phys. Lett. 2008)

- Inductance noise may explain resonant frequency (phase) noise in superconducting resonators.
- Resonant frequency  $f_r = 1/\sqrt{LC}$ .
- Noise in inductance L produces noise in f<sub>r.</sub>





FIG. 1. (Color online) Fractional frequency noise spectra of the four CPW resonators measured at  $T=55~\mathrm{mK}$ . (a) Noise spectra at  $P_{\mu\nu}=-65~\mathrm{dBm}$ . From top to bottom, the four curves correspond to CPW center strip widths of  $s_r=3$ , 5, 10, and 20  $\mu\mathrm{m}$ . The various spikes seen in the spectra are due to pickup of stray signals by the electronics and cabling. (b) Fractional frequency noise at  $\nu=2~\mathrm{kHz}$  as a function of  $P_{\mathrm{int}}$ . The markers represent different resonator geometries, as indicated by the values of  $s_r$  in the legend. The dashed lines indicate power law fits to the data of each geometry.

# Inductance $L \propto Susceptibility \chi$

- Consider a toroidal current loop (SQUID) with spins on the surface.
- Current produces B field that polarizes spins.
- Polarized spins contribute to M and flux Φ.
- Flux  $\Phi = LI \leftrightarrow Magnetization M = \chi H$ .
- $L = \mu_0 \chi \times \text{thickness} \times (\text{loop radius/wire radius})$
- Fluctuation-Dissipation theorem relates  $S_{M}(\omega)$  to  $\chi''(\omega)$ :  $S_{M}(\omega) = \frac{4kT}{\omega} \chi''(\omega)$
- Noise in L'' corresponds to noise in  $\chi''(\omega)$  and  $S_M(\omega)$ .
- Noise in L" corresponds to the second spectrum of the noise.

### Second Spectrum of the Noise



The second spectrum is the power spectrum of the first spectrum

$$S_2(\omega_1, \omega_2) = 2\langle S_1(\omega_1, t_2 = t + \tau) S_1(\omega_1, t_2 = t) \rangle_{\omega_2}$$

#### Second Spectrum – "NOISE of the NOISE"



 $S_1(T_1,f), S_1(T_2,f), ..., S_1(T_N,f)$ 

Octave summing  $f_{H}=2f_{L}$ , and FFT with respect to T

$$S_2(f, f_2) = 2\langle S_1(T + \tau, f)S_1(T, f)\rangle_{f_2}$$



**GAUSSIAN** noise



Correlated fluctuators – **NON-GAUSSIAN noise** 

# Inductance Noise Consistent with Noise in Imaginary Part of the Susceptibility

Fluctuation-Dissipation Theorem:

$$S_{M}(\omega_{1}) = \frac{4kT}{\omega_{1}} \chi''(\omega_{1}) \text{ implies } S_{2}(\omega_{1}, \omega_{2}) \square S_{\chi''(\omega_{1})}(\omega_{2}) \square S_{L''(\omega_{1})}(\omega_{2})$$

- Inductance L ~ Susceptibility χ
- Biggest slope at low temperatures
- Slowly exploring metastable states in energy landscape at low T





# Inductance Noise Consistent with Noise in Imaginary Part of the Susceptibility

Fluctuation-Dissipation Theorem:

$$S_{M}(\omega_{1}) = \frac{4kT}{\omega_{1}} \chi''(\omega_{1}) \text{ implies } S_{2}(\omega_{1}, \omega_{2}) \square S_{\chi''(\omega_{1})}(\omega_{2}) \square S_{L''(\omega_{1})}(\omega_{2})$$

- Inductance L ~ Susceptibility χ
- Biggest slope at low temperatures
- Slowly exploring metastable states in energy landscape at low T



# Energy Landscape

- System explores energy landscape.
- System spends a long time in metastable states at low temperatures.



**Configuration Coordinate** 

### Noise in Real Part of Susceptibility χ'

- To make time series of χ' (t)
  - Segment magnetization time series
  - Calculate  $\chi = N\sigma_M^2/kT$  for each segment
- Calculate noise spectrum for χ'



# SQUID Inductance Noise Consistent with Noise in Real Part of Susceptibility x'

Steepest slope at low temperatures: Slowly exploring metastable states in energy landscape at low T





#### Cross Correlation of Inductance and Flux Fluctuations

- Cross correlation  $<\delta\Phi\delta L> \sim <\delta M\delta\chi> \sim <(\delta M)^3>$  is odd under time reversal.
- Large cross correlation and anti-correlation seen experimentally implies very slow fluctuators (Weissman).
- Correlation would average to zero over very long times.
- Cross correlation between magnetization and susceptibility is zero in spin glass simulations.

  Cross Spectra of M and χ



# Summary of SQUID Noise Compared to Spin Glass Noise

- Flux noise in SQUIDs produced by mysterious magnetic impurities on metal surfaces.
- We used 2D and 3D Ising spin glass simulations to generate noise.
- $\chi \sim 1/T$  consistent with measured  $\Phi \sim 1/T$ .
- Magnetization noise consistent with measured flux noise.
- Low frequency noise in magnetization is a maximum at spin glass transition temperature.
- Susceptibility noise and 2<sup>nd</sup> spectrum of magnetization noise consistent with measured inductance noise.
- Magnetic impurities on metal surfaces act like interacting spins.

Noise as a probe of microscopic fluctations: Using the noise second spectrum to differentiate between the droplet and hierarchical model of spin glasses

# Droplet vs. Hierarchical Model of Spin Glasses

In the spin glass phase, the second spectrum can differentiate between the interacting droplet model and the hierarchical model (Weissman, Rev. Mod. Phys. **65**, 829 (1993)).



**Droplet Model** 

Hierarchical Model

### Hierarchical Model

(Parisi and others)



- •The states (configurations) of the system are represented by the end points of the lowest branches.
- •The Hamming distance between 2 states is given by the highest vertex on the tree along the shortest path connecting the states.
- •The farther 2 states are, the longer the time to go between them.
- •The tree structure is self similar.
- The second spectrum should be scale invariant and only depend on  $f_2/f_1$ , not on  $f_1$ .

### Droplet Model

(Fisher and Huse)

- •In the droplet model there are droplets or clusters of coherently flipping spins. The energy for a cluster to flip scales as *L*\* where the power θ is small.
- •Large clusters flip more slowly than small clusters. So the large clusters contribute to the low frequency noise and the small fast clusters to the high frequency noise.
- •In the simplest version the droplets are noninteracting. If this is the case, the second spectrum would be white noise.
- A more sophisticated version has interacting droplets. Large droplets are more likely to interact than small droplets so the second spectrum will be larger at lower frequencies f<sub>1</sub>.

## Droplet vs. Hierarchical Model

In the spin glass phase, the second spectrum  $S_M^{(2)}(f_1,f_2)$  can differentiate between the interacting droplet model and the hierarchical model (Weissman *et al.*).



Droplet Model

Hierarchical Model

# 3D Ising spin glass noise consistent with droplet model





# Evidence for Droplet vs. Hierarchical Model for 3D Ising Spin Glass

- Simulations in favor of droplet model:
  - Moore, Bokil, Drossel, *PRL* (1998)
  - Palassini and Young, *PRL* (1999)
  - Houdayer and Martin, *PRL* (1999)
- Simulations in favor of hierarchical model:
  - Marinari, Parisi, Ruiz-Lorenzo, Ritort, *PRL* (1996)
  - Contucci, Giardina, Giberti, Parisi, Vernia, PRL (2007)

Still controversial whether the 3D Ising spin glass obeys the hierarchical or droplet model.

### Summary

- Spins on metals produce flux noise.
- We used Monte Carlo simulations of Ising spin glasses to produce noise spectra.
- Flux and inductance noise consistent with noise produced by interacting spins.
- Noise in magnetization and order parameter q from spin glass simulations is maximum at  $T_C$
- Second spectrum of the magnetization noise consistent with droplet model.

# THEEND

### Noise Spectrum Has 3 Parts



- High frequency:  $S(f > f_{knee}) \sim 1/f^{\mu}$  (exponent  $\mu$  determined by critical exponents for  $2^{nd}$  order transition)
- Crossover or knee frequency  $f_{knee}$  in S(f) ( $f_{knee} \sim inverse$  equilibration time)
- Low frequency: Plateau for  $S(f < f_{knee})$  (maximum at  $T_C$ )

#### Noise Power Spectrum

(Chen and Yu, PRL 2007)



- Low frequency noise reaches maximum at T<sub>c</sub>.
- Total noise power ( $\sigma^2$ ) reaches maximum at  $T_c$ .
- Away from T<sub>C</sub> noise is low and white.
- Near T<sub>C</sub> high frequency noise: S(f) ~ 1/f<sup>µ</sup>.
- µ given in terms of critical exponents for 2<sup>nd</sup> order transition.

### Size Dependence of Noise

10°

10

10<sup>-3</sup>

 $10^{-4}$ 

10<sup>-1</sup>

 $10^{-3}$ 

10<sup>-4</sup>

£ 10<sup>-2</sup>

£ 10<sup>-2</sup>

- Near T<sub>C</sub>
- As  $N \to \infty$
- $f_{knee} \sim 1/N^b \rightarrow 0 \quad (b \ge 1)$
- $S(f < f_{knee}) \sim 1/(Nf_{knee}^{\mu}) \rightarrow \infty$
- $S(f > f_{knee}) \sim 1/(Nf^{\mu}) \rightarrow 0$
- $S_{tot} = \sigma^2 \rightarrow 0$
- Far away from T<sub>C</sub>
- As  $N \to \infty$
- $S(f) \sim 1/N \rightarrow 0$
- f<sub>knee</sub> independent of N
- $S_{tot} = \sigma^2 \sim 1/N \rightarrow 0$

Contradiction as  $N \to \infty$  near  $T_C$ ? Noise increases Noise  $\to 0$  from self-averaging  $\leftarrow$  Resolution



with different system sizes N

