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 Survival Probability 

 

 

 

( )P t The probability to find the particle in the system  at time  t. 

E.g. important for the characterization of  transport properties 
(in the semiclassical limit) such as 
 
Weak localization 
Shot noise 
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 In fully chaotic systems                   . 
(positive Lyapunov exponent- all trajectories are unstable)  ( ) c

t

P t e τ
−

However, generic systems are “mixed” 

 

 

Stable periodic orbit 
(regular motion) 

( )P t t γ−

“sticking” 
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The decay exponent : 1 3γ −
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Is it Universal? 
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Theories involve uncontrolled approximations. 

Numerical calculations are extremely difficult. 

A refuge:  
Numerical computations never get to the long time 
asymptotic  limit. 

We claim that even with ideal numerical accuracy it is 
impossible to extract a unique value for the decay 
exponent due to time  fluctuations in the survival 
probability.   
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Example:  fluctuations in the survival probability 
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A numerical study of the fluctuations suffers from the 
same difficulties mentioned above.    

 

Study the fluctuations by averaging over an ensemble 
of mixed chaotic systems. 

L
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( ) ( )( )1P t t p tγ δ− +

Manifestations of fluctuations: 

Relative fluctuations 
  (perturbative)  

( )
2

2 1
2 2 2
t t tp t p t p t

t
δ δ δ

⎛ ⎞Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Correlation decay over a time scale of order of the measurement time. 
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Manifestations of fluctuations (cont.): 

 

( )P t

t02 t0t

0t → ∞( )
( )

0

0

ln1
ln2 ln 2

P t
P t

γ =

( ) ( )( )22
0 02

1 2
ln 2

p t p tδγ δ δ−

( ) ( )20.68t p tδγ δ

essentially  a time independent constant of order unity.  9 
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( )

2

2

2 2 1
2

t tp t p t
t
tp t

δ δ

δ

Δ Δ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟ Δ⎛ ⎞⎝ ⎠ ⎝ ⎠ −⎜ ⎟
⎝ ⎠

( )2 .p t constδ

1. 

2. 

Our aim is to show that 

Ensemble of mixed chaotic systems?  
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Simplifying the description: Poincare sections 
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Simplifying the description: Maps 

( )
( )
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Example - the standard map: 

( )
1
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A comment on KAM theory & universality 

( ) ( )0 1 ,H H I H Iε θ= + 1 2p qω ω=

1 1

22

3
1

1
1 ...

a p
a q

a

ω
ω

=
+

+
+

 Cantor set like structure of the phase space. 

( )1
2.5

2

Kp
q q

εω
ω

− > for all q and p 

Preserved tori satisfy the condition 
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Ensemble of mixed chaotic systems?  

The Meiss-Ott model for 
mixed chaotic systems: 

approximating the dynamics 
by Master’s equations on 
hierarchical binary tree 
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The Meiss-Ott model: An example for the  phase space division 

The standard map 
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The Meiss-Ott  model:  Transition rates 
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The Meiss-Ott  solution: 

0 0 1 1 1γ γω ε ω ε− −+ =

 

1.96γ =

 Chirikov and Shepeliansky  (“level “ scaling only)   

 Zaslavsky, Edelman and Niyazov, (“class” scaling only)   2.25γ =

3γ =
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Fluctuations in the transition rates: 

 Greene, Mackay and Stark (1986). 

(Level scaling only) 

1logω−
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Assuming  that fluctuations behave statistically in a self 
similarity  manner (i.e. an invariant measure that respect the 
hierarchical structure of the phase space) : 

( )1n m n m nmW W ξ→ →→ +

( )20      nm nm n m nn mm nm mnξ ξ ξ σ δ δ δ δ′ ′ ′ ′ ′ ′= = +

“The random tree model” 

Ensemble of mixed chaotic systems  
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Results of the model:  

( )0 rand
dP M M P
dt

= +
r

r
Locator expansion 

0 0 1 1 1γ γω ε ω ε− −+ =

( )

2

2

2 2 1
2

t tp t p t
t
tp t

δ δ

δ

Δ Δ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟ Δ⎛ ⎞⎝ ⎠ ⎝ ⎠ −⎜ ⎟
⎝ ⎠

( ) ( )2 2 0.174             p t p t tδ σ δ σ −

( ) ( )2 22 2
0 0 1 1 1μ γ μ γω ε ω ε− − − −+ =
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Numerical results for the random tree model 
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( ) ( )2t p tδγ δ

 

( )tδγ σ

essentially independent of time 
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Numerical study: 

( )1

1 1

sinn n n n
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The standard map with a small 
random (Gaussian) component: 

( ) 0R θ =

( ) ( )
22

2
m

l

m
R R e

θ θ π

θ θ σ
′− −⎛ ⎞−⎜ ⎟
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Fluctuations correlations: 

Also the perturbative 
result of the random 
tree model: 2

1
2
t
t

Δ⎛ ⎞−⎜ ⎟
⎝ ⎠

 
( )2

2 2
t tp t p t

p t

δ δ

δ

Δ Δ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Fluctuations magnitude  

 ( )2p tδ
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Summery & reservations 

The  model is Markovian, but this is only an approximation. 

Correlations decay on the scale of the measurement time  

Relative fluctuations essentially do not decay 

 

A unique value of      may exists only in ensemble 
average sense. 

γ
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Example: standard map 
 

“Happy families are all alike, every unhappy family  is 
unhappy in its own way.”  Tolstoy 


