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Introduction



Nobel Lecture

l--h p hi | ip W_ An de rSDn Mobel Lecture, December 8, 1977

5 The Nobel Prize in Physics 1977

Local Moments and Localized States

| was cited for work both. in the field of magnetism and in that of
disordered systems, and | would like to describe here one development
in each held which was specifically mentioned in that citation. The two
theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which. were very much in the air at
the time, and it had rapid and permanent acceptance because of its
timeliness and its relative simplicity. What mathematical difficulty it
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and
even fewer saw its importance; among those who failed to fully
understand it at first was certainly its author. It has yet to receive
adequate mathematical treatment, and one has to resort to the indignity
of numerical simulations to settle even the simplest questions about it .



Anderson + Lattice - tight binding model
I\/I()d e|  Onsite energies & - random

« Hopping matrix elements |ij

| and ] are nearest
neighbors

otherwise



Anderson + Lattice - tight binding model
I\/I()d e|  Onsite energies & - random

» Hopping matrix elements |ij

| and | are nearest
neighbors

otherwise

Anderson Transition EESETCIRY

I<|c | > |

C
Insulator Metal

All eigenstates are localized There appear states extended
Localization length Z:, all over the whole system
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Eigenfunctions are close to the The probability is equally

original on-site wave functions shared between the sites



csEsseses
Tt

Anderson insulator
Few isolated resonances
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Anderson metal
There are many resonances
and they overlap

Typically each site is in the
resonance with some other one
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Anderson insulator Anderson metal energy

Few isolated resonances There are many resonances misma’rch
and they overlap

_ Typically each site is in the # of nearest
resonance with some other one neighbors

A bit more precise:

Logarithm is due to the resonances, which are not nearest neighbors



Condition for Localization:

> (50) (5a)

Q cIs it cor'r'ecf?

Al . For low dimensions - NO.|_ = oo for d=12
* All states are localized. Reason - loop trajectories

AZ * Works better for larger dimensions d > 2

A3 « Is exact on the Cayley tree (Bethe lattice)

W

. = , K is the branching number
KinK




J. Phvs, C: Sahd State Phys, Vol 6, 1973, Printed in Grear Britain. & 1973

Anderson Model on a Cayley tree

A selfconsistent theory of localization

R Abou-Chacrat, P W Andersonis and D J Thoulesst
t Depariment of Mathematical Physics, University of Birmimgham, Birmmgham, B15 2TT

1 Cavendish Laboratory, Cambridge, England and Bell La®boratories, Murray Hill, MNew
Jersey, 07974, TISA

Beceived 12 January 1973

Abstract. A new basis has been found for the theory of localization of electrons m disordered
swstems, The method 15 based on a s¢lfconsistent solution of the equation for the self energy
in second order perturbation theory, whose sclution may be purely real almost evervwhere
(localized statesd or complex evervwhere {nonlocalized states), The equations used are
exact for a Bethe lattice. The selfconsistency condition gives & nonlinear integral equation
in two variables for the probability distribution of the real and imaginary parts of the self
energy, A simple approximation for the stability himit of localized states gives Anderson's
‘upper limit approximation’. Exact solution of the stability problem in a special case gives
resulis very close to Anderson’s best estimate. A general and simple formula for the stability
Lirmit is dertved; this formula should be valid for smooth distribution of st energies away
from the hand edge. Results of Monte Carle calculations of the selfconsistency problem
are described which confism and go beyond the analytical results, The relation of this
theory to the old Anderson theory 15 exarmined, and it 15 con<luded that the present theory
1% similar buot better.



Anderson Transition

all states are

\ localized

DoS

EC - mobility edges (one particle)



Temperature dependence of the conductivity
onhe-electron picture

)
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Temperature dependence of the conductivity

onhe-electron picture

Assume that all the
states
are localized:

eg.d=1,2




Inelastic processes

transitions between localized states

— T = B — energy
".“"[i‘“—“ “““ l fﬁ — &a mismatch



Phonon-assisted hopping

_ -

Variable Range o(T) exp | — % d

Hopping T

N.F. Mott (1968) i _

Mechanism-dependent Optimized
prefactor phase volume

Any bath with a continuous spectrum of delocalized
excitations down to @ = 0 will give the same exponential



Phononless conductance
in Anderson insulators
with e-e interaction




Anderson
Sl Thsulator => Phonon assisted
T weak e-e hopping transport

interactions

Can hopping conductivity 7
exist b

Given: 1. All one-electron states are localized

2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Find: DC conductivity o(T,@=0)
(zero or finite?)



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

A#1l: Sure

1. Recall phonon-less ) do )
AC conductivity: G [T Ind+1 0¢
Sir N.F. Mott (1970) o (w) = h O¢ " w

2. Fluctuation Dissipation Theorem:
there should be Johnson-Nyquist noise

3. Use this noise as a bath instead of phonons

4. Self-consistency (whatever it means)



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

A#l: Sure

A#2: No way (L. Fleishman. P.W. Anderson (1980))
Except maybe Coulomb interaction in 3D

2 d—2 2
h
o (w) >~ ‘ ;{)C ( w) Indt1

O¢ is contributed by
rare resonances

W:fﬁ—fa:@y—fé

—e- : 5\ THT
element => o(T) oc 1) exp | = T
vanishes _ i

R—ow =



No é{) No

phonons transport

>If the localization
length exceeds |_ ,
then - metal. ¢

At high enough
temperatures
conductivity should
be finite even
without phonons

>In a metal e-e
interaction leads to
a finite L¢




Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

A#1:. Sure
A#2: No way (L. Fleishman. P.W. Anderson (1980))

A#3: Finite temperature Metal-Insulator Transition
A (Basko, Aleiner, BA (2006))
o(T)

Drude

< metal

<—|nsulator—

=0

v




Finite temperature Metal-Insulator Transition

A
o (T) Many body wave functions are Drude
localized in functional space
metal >
—insulator— AL 1 g}ﬁiﬁﬁtﬁon

Localization
C _(VC: ) spacing
>

~_ % T

Definitions:
Insulator o0 =0 Metal o #0
not do/dT <0 not do/dT >0



Many-Body
Localization

BA, Gefen, Kamenev & Levitov, 1997
Basko, Aleiner & BA, 2005



Example: Random Ising model in the perpendicular field

Will not discuss today in detail

i—1 . i i—1 | i—1 -
w Perpendicular
field

Random Ising model
in a parallel field

O, - Pauli matrices, o :i%




=1 1 ] i=1
W Perpendicular
field

Random Ising model
in a parallel field

- Pauli matrices
1=12,...N: N>>1

Anderson Model on
N-dimensional cube

o(fo) 1=+
hoping between
onsite energy nearest neighbors

{Giz} determines a site



Anderson Model on N-dimensional cube
Usually: Here:

# of dimensions  d —>const # of dimensions d=N —>o0

system linear size L — oo system linear size L=1



9-dimensional cube
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Eﬁ(—insulator—x— metal O'>O —>
E o=0 S. = (Vé’d )‘1 localization
é Many body > spacing
localization! j :
c interaction
S A< strength
O¢
“= AN A Bad metal Drude metal
S g

temperature T

Definitions:
Insulator o =0 Metal o #0
not do/dT <0 not do/dT >0



Many-Body Localization

1D bosons + disorder



1D Localization

Exactly solved: Gertsenshtein & Vasil'ev,
all states are localized 1959
Conjectured: Mott & Twose, 1961

. correct for
1-particle problem === bosons as well
as for fermions



Bosons without disorder

Bose - Einstein condensation

‘Bose-condensate even at weak enough repu

sion

//:“Even in 1d case at T=0 - “algebraic superf

‘Finite temperature - Normal fluid

. al

Normal fluid

uid”



Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453,
891- 894 (2008).

Roati et al. “Anderson localization of a non-interacting
Bose-Einstein condensate®. Nature 453, 895-898 (2008).

No interaction !



Thermodynamics of ideal

Bose-gas in the presence d
of disorder is a pathological — Nee
problem: all particles will

occupy the localized state

with the lowest energy

repulsion



Weakly interacting bosons

‘Bose - Einstein condensation
‘Bose-condensate even at weak enough repulsion

Even in 1D case at T=0 - "algebraic superfluid”

1. No interaction 2. No disorder 3. Weak repulsion
disorder _4 disorder
Nermalnia =
FE Ciy Superfluid- @
|| Gl e insulator =
S ERE transition
@ © | disorder T Superfluid-
s> 1D = insulator
= | localization g transition
-
7p



T=0 Ssuperfluid - Insulator Quantum Phase Transition

_4% disorder

=

<

-

7))

=

o BKT- ]

= transition

= in 1+1 dim.

Q

o

-

(7))

. . relatively

T. Glamarchi and H. J. Schulz, Phys. Rev., strong
B37, #1(1988). interaction

E. Altman, Y. Kafri, A. Polkovnikov & G.
Refael, Phys. Rev. Lett., 100, 170402 (2008). weak

G.M. Falco, T. Nattermann, & V.L. Pokrovsky, interaction
Phys. Rev., B80, 104515 (2009).




disorder

?

superfluid Insulator

Normal fluid

Is it a normal fluid at any ’rempera’rur‘e?



There can be no phase transitions

at a finite temperature in 1D
Van Howe, Landau

Thermal fluctuation destroy any
long range correlations in 1D

T=0 Normal flui

Neither normal

fluids nor glasses

(insulators)
exhibit long range
correlations

d - Insulator Phase Transition:

True phase transition:
singularities in

still |transport (rather
than thermodynamic)
properties




What is insulator?

Perfect Zero DC conductivity at
Insulator finite temperatures

Possible if the system is decoupled from any outside bath

Normal Finite (even if very small)
metal DC conductivity at finite
(fluid) temperatures




VW T, o ([T ML T Bl bosons = fermions ?

Bosons with infinitely __ :
strong repulsion X Free fermions

Fermions with infinitely

Free bosons X strong attraction

Weakly interacting ~ Fermions with strong
bosons ~ attraction

AU
\___/
v, g
X

>

As soon as the occupation numbers become large
the analogy with fermions is not too useful




1D Weakly Interacting Bosons + Disorder

Aleiner, BA & Shlyapnikov, 2010, Nature Physics, to be published
cond-mat 0910.4534

- - disorder
1. No Interaction 3. T=0 2
disorder 5
4 % I5
For any EXZ
temperature S
) g and any
0 © finite
= 2 disorder 2 2
v 1D disorder g3
localization §’a 1
<3
& 2
2. No disorder T
® > T
Normal fluid > |



Density of States V(&) in one dimension

No disorder m
Quadratic spectrum V(g) % 272'27125

J - singularity




Density of States V(€) in one dimension

V(E) Tv(e)

No disorder

Quadratic spectrum

1 Inthe presence

of disorder the
singularity is
smeared




Density of States V(&) in one dimension

Lifshitz tail:
exponentially
small Density
of States




Weak disorder - random potential U(X)

Random potential U(X):
V() Amplitude U,
T Correlation length O
hZ

2

Short range disorder: U, <<
Mo

|l

Localization length {>>0

E




Characteristic scales:

4 2 N3
Energy E. E(UOGZ mj
V(E) ?
(GER J B\
Length ¢, = >> 0
UZom

All states are localized

Localization length:







Finite density Bose-gas with repulsion
Density 1N

Two more energy scales
hznz

Temperature of quantum degeneracy T, = R

Interaction energy per particle 110

x=E, /ng Characterizes the

Two strength of disorder

dimensionless

arameters s Characterizes the
P A ng/ Td interaction strength

Strong disorder x>>1
Weak interaction y <<1



Dimensionless temperature t=T/ng

Critical temperature T, t. =t (K‘, 7/)
Critical disorder K. =K, (t, 7/)

Phase transition line on the t,x - plane




Finite tfemperature
k=E, /ng phase transition in 1D
Insulator (1




Conventional Anderson Model

e bl per site OO0
‘nearest neighbor hoping OO
Basis:‘i>; ilgﬁglss @@®®
Hamiltonian:H = +V 66@6
fo=2alii| V= X1l

I, jJ=n.n.

Transition: happens when the hoping matrix element
exceeds the energy mismatch

The same for many-body localization



Many body Anderson-like Model
° t ’
. ?eil%aﬁage;riiilses @@@ Basis: ‘,u ‘ >

per site.
* Interaction @@@ | label sites




Many body Anderson-like Model
et @O Basis: |u)
. :gnetrersalltcet.ion @@@ = {ni }
@@@ | labels sites
occupation

N, = 0,1, 2, =« numbers

Hamiltonian:
A=t +v  Ho= 2B lu)u

Sac




Conventional Many body Anderson-

Anderson like Model

Model Basis: ‘ ,u>, 1= {
Basis: |i)

n_a

‘)

n. =0,12,...

| labels sites

i labels occupation numbers
sites
H =2 ali)f+ A =ZElaul+ 3 11a)v(u)
o u pv(u
2. ]
i, j=n.n.
“nearest v(u)) :‘..,ni -1,..,n,-1,..,n +1,.,n’ +1,..>
neighbors”: i, j,k,1=n.n.



Transition temperature: NEESHELY

i), 3)= k). [1) )0
transition ‘k> %’ g LAML‘ |>



Transition temperature: NEESHELY
i)11) = k)N) jjocen
transition \@% O O JMLW

_ _ .~ _ g~ ener
Aju =& +& -6 =& mismgc?;'ch

Iij,kl matrix element Decay of a state ‘|>

A typical mismatch
N, typical # of channels

Anderson condition: | typical matrix element

>>A(T)/N,;(T) extended
I(T)<< A(T)/N,(T) localized




High temperatures: RESIERCIN SO

Bose-gas is not degenerated:
occupation numbers either O or 1

Matrix element of the transition

| ~9/c(e=T)~(9E.)/(c.T)

should be compar'ed wi1'h the minimal energy
mismatch (vc) vng 2-|-

E2
[Loca!izﬁ Numbeﬁq OC t t]/ >>1
spacing 5g

channels




Intermediate temperatures: 7/‘” Pt - 7/_1

1.7 <<Td P t7/<<1

2. Bose-gas is degenerated. occupation numbers
either >>1.

3. Typical energies |u|=T4/T,, u is the chemical

potential. Correct as long as (mu tiple o
4|>>ng,E. = ty >>1  |oceupation 7 -

<<T

4. Characteristic energies &~
g M >>ng, E.

We are still dealing with
the high energy states



Intermediate temperatures: 7/‘]/ e 7/‘1
‘lu‘:TZ/Td >>ng,E* T<<Td

Bose-gas is degenerated; typical energies ~

1|>>T — occupation numbers >>1— matrix
elements are enhanced

g T
P N, ~—2 T - -
0080 090 1 — <) g> '_._._t!."ti-—l--l-l--l

-4 B B0 - WPl b e

K (t)oct?y¥® |y <<ty <<l



Low temperatures: [/ Start with T=0

Bosons occupy onlr
ow

K =E,/ng>>1— ‘,U‘ << E, — small fraction of

,) ENergy states & < [




Low temperatures: [/ Start with T=0
Bosons occupy onl

K =E,/ng>1= ‘,U‘ << E, — small fraction of Yow

I. I I

Occupation #:( ,u—gi)g* / g ,u2
= = = — E
<—|(K) >< - > I(K):g*ﬁ>>g*

&) (@) &) Occupation
nl (K)/g* =y ¥2>>1




Low temperatures: |R /A Occupation

_ ., Y2
k=E./ng>>1 — “lakes”  M(K)/e.=rT>>1

Distance
(k) =g NK >>,
L

<—|(K‘) >
2 s &

Strong
insulator

(k) >>¢, =

KK, Insulator — Superfluid transition in

(k) <<, == a chain of “Josephson junctions”




Low temperatures: | ana

Strong
insulator

k=E,/ng>1 =

T =0 transition x, ~1

k=E./ng

Insulator
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-
—
——
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Disordered interacting bosons in two dimensions

Fluid

Temperature

-




Disordered interacting bosons in two dimensions

Justification:
1.

2.

4 Disorder ,'

=g =

Fluid

Superfiuid

Temipe rature

.

At T=0 normal state is unstable with respect to either
insulator or superfluid.

At finite temperature in the vicinity of the critical
disorder the insulator can be thought of as a collection
of "“lakes”, which are disconnected from each other.
The typical size of such a “lake” diverges. This means
that the excitations in the insulator state are localized
but the localization length can be arbitrary large.
Accordingly the many -body delocalization is unavoidable

at an arbitrary low but finite T.



Phononless conductance

Many-body Localization
of fermions




>

Eﬁ(—insulator—x— metal O'>O —>
E o=0 S. = (Vé’d )‘1 localization
é Many body > spacing
localization! j :
c interaction
S A< strength
O¢
“= AN A Bad metal Drude metal
S g

temperature T

Definitions:
Insulator o =0 Metal o #0
not do/dT <0 not do/dT >0



I>

Many body Anderson-like Model
IR @O®@®  Basis: |u)
. gﬁrsistg%iisorder @@@@ = { ni }

e |ocal

interaction @@@@ . labels  labels

I I sites levels

Hamiltonian: o occupation
H — n"=0,1

—H, +V. +V, O_;Eﬂ‘ﬂxﬂ‘\; i numbers

‘v()—‘ n*—1,..n" -1,..,n +1,.. n+1>



Conventional

Anderson
Model

Basis: ‘ i>

i labels
sites

A:ZQWM+
2, (|

I, j=n.n.

Two types of
“nearest
neighbors”:

Many body Anderson-

like Model
\ . o
Basus.‘ ,U>, U = { n, }
- labels alabels nia:O_’l
I Sites levels occupation

numbers

”=§EWMM+
EQVMWMH
ﬂ%ﬁh%ﬂw\

v(w))=|..0 =1,..n +1,..>, i, j=nn.
7()) =] =L 0 =L 0 +1.,10 +1,..)




Anderson’s recipe:

1. take descrete spectrum E of H,
2. Add an infinitesimal Im partinto E,

3. Evaluate ImZ’u

-

insulator

‘JI \lll\l

[ImG;i{EHsi]

lim

@ ;| T
@ 47
€ s A @ s

E E limits 2) 7 —0
4. take limit 7 —>0 but only after N —>oo?$ metal
5. “What we really need to knowisthe | <f -~ _—

probability distribution of ImZ2, not
its average...” o E




Probability Distribution of 7=Im X

L P(T) 7 is an infinitesimal width (Im
part of the self-energy due to
| \ metal a coupling with a bath) of
e | one-electron eigenstates
| ulator |
I i x 1/
| \xn
/I | |
| I
| I
- ()
Look for:

> 0; metal
lim lim P(I'>0) =
UV —oo 0; insulator



Stability of the insulating phase:

NO spontaneous generation of broadening

I’ (¢)=0 E>E+IN
Is always a solution linear stability analysis
I I
>mo(e—¢& )+

(&) +T° (£-&,)°
After N iterations of ( \N
the equations of the n AT 1
Self Consistent P, (I') oc —1_,3/2 const 5— In z
Born Approximation \ $ y,

first m — OO _ _
<I1- |
then 1 — O (...) <1 —insulator is stable !



Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

Baron Minchhausen regime

Cascade regime


http://upload.wikimedia.org/wikipedia/commons/7/7b/Gottfried_Franz_-_Munchhausen_overriding_a_cannon-ball.jpg

Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created Nn_ (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

Typical size —
of the ~
cascade

a

length



Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created Nn_ (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

At some temperature T =T, n, (T)
This is_the critical temperature. g
Above T; one phonon creates
infinitely many pairs, i.e., phonons

are not needed for charge transport.




Many-body mobility edge

1

mobility
transition ! edge



Many-body mobility edge

1

Large E (high T): extended states

(good metal)

Fermi Golden Rule
hopping (bad metal)

mobility
transition ! edge



Finite T normal metal - insulator transition

is another
example of the many-body localization

S, insulator—>i<— metal o>( >
E O'=O : O. = (ng )‘1 localization
é Many body : > spacing
localization! | ! j j
= interaction
S i A< strength
5| : .
Te >~ I noner'godlc ergod|c
)\| INn )\| |
| . .
|

temperature



We will call a quantum state |u)

ergodic if it occupies the number N,
of sites N, on the Anderson lattice,
which is proportional to the total
number of sites N:

N N
Nﬂ —>0 Nﬂ ——>const >0
nonergodic ergodic

Localized states are

) . > Cconst
obviously not ergodic: " # Now

Q: Is each of the extended state ergodic ?
A: In 3D probably YES, for d>4- probably NO



Nonergodic states

Cayley tree
(Bethe lattice)

B W
° KInK

is the
K branching
number

. <1 <W

Extended but
not ergodic



NﬂzInN << N

nonergodic

N




nonergodic

777

glassy




