Glassiness in insulating granular Al thin films

<u>Thierry Grenet</u>, Julien Delahaye, Frédéric Gay, M. C. Cheynet*, Maher Sabra, Jean Honoré,

Institut Néel, CNRS Grenoble *SIMAP, Grenoble

OUTLINE

- how it started
- manifestations of « glassiness » in granular Al
- ageing
- -questions

Electron Coulomb glass ?

J. H. Davies, P. A. Lee and T. Rice (1982):

localized electrons + unscreened coulomb repulsion \rightarrow *highly correlated* \rightarrow *new glass (finite T glass transition?)*

Ben Chorin et Ovadyahu (1991): **anomalous field effect and very slow relaxation of conductance in insulating indium oxide**

Manifestation of the electron (Coulomb ?) glass in indium oxide ...

Indium oxide ... what else ?

QUESTIONS:

- What is special with indium oxide ? Why no other system ?
- Standard doped semi-conductors: Ø
- -What about granular metals ?
 - → look for these effects in granular AI

actually seen in: granular gold (Adkins et al., 1984) ultrathin lead (Goldman et al. , 1997 and 2001)

OUTLINE

- how it started
- manifestation of « glassiness » in granular Al
- ageing
- questions

Granular Aluminium samples

Study insulating films:

 $R/_{\Box}$ at 4K: 100 k $\Omega \rightarrow$ 100 G Ω

lundi 2 août 2010

8

Out of equilibrium effects: slow relaxation

Never ending slow conductance relaxation after a quench

Out of equilibrium effects: field effect anomaly

- Field effect anomaly (the "cusp" or "dip")

- Amplitude grows like Ln(*t*)

Out of equilibrium effects: thickness dependence

Baseline relaxation in «thick enough» samples:

- signature of a finite screening length (L_{screen} around 10 nm)

11

When do we see this anomaly ?

- for practical reasons we study samples were the anomaly is not so large ($\leq 1\%$) but it can be a large effect (more than 10%)

Cusp dynamics

After a gate voltage change:

Is the dynamics activated ?

Is the dynamics accelerated when T is increased ? (it would explain why the dip becomes very faint)

But how to detect a change of the dynamics if it has no characteristic time?

 \rightarrow look at the erasure time of a previously formed dip

Is the dynamics activated ?

 \Rightarrow dynamics is not activated

OUTLINE

- how it started
- some aspects of the « glassiness » in granular Al
- ageing
- questions

If it is a glass ... does it age ?

AGEING:

Ex: creep tests on polymers

Creep compliance (t) = ϵ (t) / σ_0

The dynamics depends on time: the « older » the system, the slower the response to a stimulus !

PVC quenched from 90°*C to* 40°*C* (T_g =80°*C*) *L.C.E Struik,* 1978

« ageing» and « Two dip » protocols

equivalent spin glasses protocols

t(a)

20

Standard ageing protocol (1)

New dip growth: **NOT** like Ln(t)

Standard ageing protocol (2)

Rejuvenation by annealing

w2

time

t_{w1}

Example of spin glasses

The age of the system is printed in its relaxation time distribution

« ageing» and « Two dip » protocols

Two dip protocol: very «old» system

« Two dips » protocol

Two dip protocol: «young» (ageing) system

A simple quantitative approach when *t*_{w1}>>*t*_{w2}

«Superposition principle»

erasure:

«Superposition principle»

A simple quantitative approach of ageing

- -collection of independant reversible « degrees of freedom »
- additive effect on G
- $Ln(\tau_i)$ has a broad (flat) distribution

 $-\tau_{i\rightarrow} \neq \tau_{i\leftarrow}$

Suppose:

$$\tau_{i\leftarrow} = \tau_0 \exp(\xi_i)$$
 and $\tau_{i\leftarrow} = \tau_0 \exp(k * \xi_i)$

A simple quantitative approach of ageing

33

OUTLINE

- how it started
- some aspects of the « glassiness » in granular Al
- is ageing present ? (is it a glass?)
- questions

- competing « extrinsic » (non electronic) scenarios can be envisaged (slow atomic or ionic processes influencing the conductance)

- are there indications in favor of the coulomb electron glass ?

- 1) in Indium oxide: effect of carrier concentration (varied by changing oxygen concentration)

* systematic effect of carrier concentration on the field effect anomaly width

* the dynamics is also influenced by the carrier concentration (fast erasure of a formed field effect anomaly by a high enough Vg change)

Is this glass purely electronic ?

- 2) slow relaxation in mesoscopic samples :

- mesoscopic fluctuations (fluctuations of percolation path as a function of $V_{\rm q})$ and the cusp coexist

- both seem to have very different time scales (disorder seems totally frozen) → may be consistent with electron glass (cusp slow relaxation not due to disorder (atoms) relaxation)

Is this glass purely electronic?

- 3) systematics in other materials:

Up to now:

- studied in: indium oxide, granular aluminium
- seen in: granular gold, ultra thin Pb on a-Ge
- being studied in Ni films (without oxide, strong effect of magnetic field on the dynamics, Aviad Frydman)

- maybe present in icosahedral insulating quasicrystal i-AIPdRe

What do these materials have in common ?

Only expected in insulating samples ?

Apparent paradoxes:

- thermal memory of cusp but not of « back-ground » conductance
- very slow relaxations even for weakly (and metallic?) insulating samples

Understanding the dynamics ?

 mechanism / significance of the ageing behaviour ? (indication for the importance of correlations ?)

39

What we need:

theoretical predictions*

*that can be tested experimentally