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Outline

• Electron glass model

• slow relaxations and aging

• statics (Coulomb gap) & steady-states (Variable Range Hopping)

Dynamics:

• mapping to a new class of Random Matrix Theory (RMT)

•Definition of Random Distance Matrices

• Solution of model: eigenvalue distribution through moment calculation

• Solution of model : RG approach localization properties

• Implications:  slow relaxations, localized phonons

• Conclusions



Huge viscosity of glasses
• Disordered system – a snapshot looks identical to a liquid.

• It flows extremely slowly (huge viscosity).

• Similar to „real‟ glass (SiO2) / pitch:

http://www.smp.uq.edu.au/pitch/

R. Edgeworth, B. J. Dalton and T. Parnell, 

Eur. J. Phys (1984) : visocity = 1011 *water viscosity

EventYear

The stem was cut1930

1st drop fell1938(Dec)

2nd drop fell1947(Feb)

3rd drop fell1954(Apr)

4th drop fell1962(May)

5th drop fell1970(Aug)

6th drop fell1979(Apr)

7th drop fell1988(Jul)

8th drop fell2000(Nov)

http://www.smp.uq.edu.au/pitch/


Common features of glassy models

• Quenched disorder. 

• Rugged energy landscape: Many states 

close to ground state.

• Aging  and memory effects: relaxation 

slower if perturbation lasts longer.

Physical examples

• Structural glass (Window glass)

• Various magnetic materials.

• Packing of hard spheres.

• Electron glass!   (long-ranged 

interactions, but not infinite!)

General questions: structure of states, out-of-equilibrium dynamics?
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Slow relaxations in nature

Electron glass- Experimental system

string

mass

W. Weber, Ann. Phys. (1835)

D. S. Thompson, J. Exp. Bot. (2001)

Ovadyahu et al.What are the ingredients leading

to slow relaxations? Logarithmic relaxations for 5 days!



An Aging Protocol

• Step I: Cool the system and let it relax for a long time (days)

• Step II: Switch on “the perturbation”

• Step III: After aging time tw – Switch the perturbation off

• Throughout the experiment a physical property (dielectric constant) is measured 

as a function of time

E

E

t

tw

t=0 t=hours

15 µm thick Mylar (slide)

(amorphous polyester)

Or BK7-window glass
5 V/µm

Ludwig, Nalbach, Rosenberg and Osheroff, PRL (2003)



Electron glass aging– experimental protocol

Step II

Vg is changed, for a time of tw.

Step I

System equilibrates for long time

Throughout the experiment

Conductance is measured as a 

function of time. 

Experiment

Theory

Data: Ovadyahu et al.

A. Vaknin and Z. Ovadyahu and M. Pollak, PRL 2000



Aging and universality

]/1log[ ttw

Amir, Oreg and Imry, to be published



The model

• Strong localization due to disorder  

randomly positioned sites, on-site disorder.

• Coulomb interactions are included

• “Phonons” induce transitions between configurations.

• Interference (quantum) effects neglected.

e.g: 

Pollak (1970)

Shklovskii and Efros (1975)  

Ovadyahu and Pollak (2003)

Muller and Ioffe (2004)

phonon



“Local mean-field” approximation - Dynamics

• The system reaches a locally stable point (metastable state).

• Many metastable states, each manifesting a Coulomb gap

(“Pseudo-ground-states”, Baranovski et al., J. Phys. C, 1979)

At long times (Statics):
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• includes the interactions

• N is the Bose-Einstein distribution

•  - the localization length

E

AA, Oreg and Imry, PRB (2008)



“Local mean-field” approximation - Equilibrium

• Detailed balance leads to Fermi-Dirac statistics (njfj).

• Self-consistent set of equations for the energies:
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Yields linear Coulomb gap

(+ temperature dependence)

M. Pollak, Discuss. Faraday Soc  (1970)

A.L. Efros and B.I. Shklovskii, 

J. Phys. C (1975)

A. L. Efros, J. Phys. C (1976).

M. Grunewald et al., J. Phys. C. (1982)

A. A. Mogilyanskii and M.E. Raikh (1989)

T. Vojta and M. Schreiber (1994)

AA et al., PRB  (2008)

Surer et al., PRL (2009)

Goethe et al., PRL (2009)

“Local mean-field” approximation - Equilibrium
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• Detailed balance leads to Fermi-Dirac statistics (njfj).

• Self-consistent set of equations for the energies:

“Local mean-field” approximation - Equilibrium
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Efros-Shklovskii argument , T=0

= occupied site

= unoccupied site

Cost of moving an electron:
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Assume finite density of states at Ef Contradiction.

0EFor ground state:

Upper bound is
1||)(  dEEg 



Miller-Abrahams resistance network (no interactions)

A. Miller and E. Abrahams, (Phys. Rev. 1960)
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Equilibrium rates,

obeying detailed balance

“Local mean-field” approximation – Steady State

Generalization

1) Find ni and Ei such that the systems is in steady 

state.

2) Construct resistance network.



Ovadyahu  (2003)GeAs samples  Shlimak, Kaveh, Yosefin,

Lea and Fozooni (1992)

With interactions (ES) Without interactions (Mott, VRH)
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“Local mean-field” approximation – Steady State



VRH (Mott) to E-S Crossover 

Scaling is obeyed at crossover,

Amir, Oreg and Imry , PRB (2009)

 

2

0

6~),/(/log eTTTfE xx

Slope is ~0.49   0.02

Slope is ~0.34   0.01



We saw: approach works well for statics  & steady-states

Moving on to dynamics…

“Local mean-field” approximation - Dynamics
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Solution near locally stable point

Close enough to the equilibrium (locally) stable point, 

one can linearize the equations, leading to the equation:
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All eigenvalues are real and negative

For low temperatures, near a local minimum, 

second term is negligible 
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Eigenvalue Distribution

Solving numerically shows a distribution proportional to        : 

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Eigenvalues Eigenvalue distribution



1) Choose N points randomly and uniformly in a d-dimensional cube.

Digression: What are Random Distance Matrices?

I. M. Lifshitz, Adv. Phys (1964).

Mezard, Parisi and Zee, Nucl. Phys. (1999)

Bogomolny, Bohigas, and Schmit, J. Phys. A: Math. Gen. (2003).
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1) Choose N points randomly and uniformly in a d-dimensional cube.

2) Define the off-diagonals of our matrix as:

3) Define diagonal as:
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Q: What is the eigenvalue distribution?

What are the eigenmodes?
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Digression: What are Random Distance Matrices?



Distance matrices – Motivation

Relaxation in electron glasses

Amir,  Oreg and Imry, PRB 2008

Anomalous diffusion

Scher and Montroll, PRB 1975

Metzler, Barkai and Klafter, PRL 1999

Localization of phonons

Ziman, PRL 1982

Vitelli et al., PRE 2010

Photon propagation in a gas

Akkermans, Gero and Kaiser, PRL 2008



Results – 2D



Results
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Results

(no fitting parameters)



Results

(no fitting parameters)



Exponential Distance Matrices- results

(arbitrary dimension d)

Cd=volume of a d-dimensional sphere,/ r 

• Logarithmic corrections to 

• In dimensions > 1:  cutoff at 
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Amir, Oreg and Imry, PRL (2010)
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Calculation of moments:



Analytical approach in a nutshell

13221 ,,, ...
1

)( iiiiii

k

k k
AAA

N
dPI   

Part I – Moment calculation
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The k‟th moment:

leads to the distribution function.
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Renormalization group approach



Mechanical intuition: network of masses and springs

Renormalization group approach



Renormalization group approach

Dasgupta and Ma, PRB 1980 

Fisher , PRL (1992) etc.



Renormalization group approach

21

2 111
,/

mm
K 






Renormalization group approach



RG procedure yields growing clusters

Renormalization group approach



Examples of eigenmodes of a 5000X5000 matrix

3‟rd 1000

3000 4000

86.1~  05.0~ 

4106.9~  5105.8~ 

Structure of eigenmodes



Eigenvalue distribution 

)|2/(|log
2~

 dddC

c en

RG approach+
Renormalization group approach

Number of points in a cluster of a given eigenvalue



• Eigenmodes are localized clusters (“phonon localization”)

• Size of clusters diverges at low frequencies

+

Number of points in a cluster of a given eigenvalue

Renormalization group approach

Eigenvalue distribution 

)|2/(|log
2~

 dddC

c en

RG approach

Amir, Oreg and Imry, Localization, anomalous diffusion and slow relaxations:

a random distance matrix approach,  PRL (2010)



Electron glass aging– experimental protocol

Step II

Vg is changed, for a time of tw.

Step I

System equilibrates for long time

Throughout the experiment

Conductance is measured as a 

function of time. 

Experiment

Theory

Data: Ovadyahu et al.



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

Initially, system is at some local minimum



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

At time t=0 the potential changes, 

and the system begins to roll towards the new minimum



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

At time tw the system reached some new configuration



Aging – physical picture

Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the repsonse?

Now the potential is changed back to the initial form-

the particle is not in the minimum!

The longer tw, the further it got away from it.

It will begin to roll down the hill.



Aging – Analysis
Assume a parameter of the system is slightly modified (e.g: Vg)

After time tw it is changed back. What is the response?

Logarithmic relaxation during step II 

Full aging
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Sketch of calculation
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See also: T. Grenet et al. Eur. Phys. J B 56, 183 (2007)



Aging Protocol - Results

]1log[
t

tw

)log( min wE t 

Amir, Oreg and Imry, PRL 2009



Amir, Oreg and Imry, PRL (2009)

• Full aging

• Deviations from logarithm start at

Detailed fit to experimental data

wtt /



Full aging and universality

]/1log[ ttw

Amir, Oreg and Imry, to be published



Deviations from full aging

Porous Silicon data (S. Borini)

][)]([ minmin tEittEi w  



Connection to 1/f noise?

Equipartition theorem: each eigenmode should get 2/kTE 

The mean-field equations can be derived from a free energy:
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B.I. Shklovskiı,

Solid State Commun (1980)

K. Shtengel et al., 

PRB (2003)

Amir, Oreg, and Imry

arXiv:0911.5060, Ann. Phys. 2009 

http://lanl.arxiv.org/abs/0911.5060
http://lanl.arxiv.org/abs/0911.5060
http://lanl.arxiv.org/abs/0911.5060
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Conclusions

• Statics: Coulomb gap, Steady-state: Variable Range Hopping

• Dynamics near locally stable point:  many slow localized modes,           distribution. 

How universal? We believe: a very relevant RMT class.

• One obtains full aging, with relaxation approximately of the form :

λ
1~

]1log[~
t

tw

More details:

Phys. Rev. B 77, 1, 2008 (local mean-field model)

Phys. Rev. Lett. 103, 126403 (2009) (aging properties)

Phys. Rev. B 80, 245214 2009 (variable-range hopping)

Ann. Phys. 18, 12, 836 (2009) (1/f noise)

Phys. Rev. Lett. 105, 070601 (2010) (exponential matrices – solution)

Electron glass dynamics – Review (soon online)


