Numerical simulations of the electron glass (in and out of equilibrium)

Matteo Palassini
Universitat de Barcelona

with
Martin Goethe

August 19, 2010. Program "Electron Glasses", Kavli Institute for Theoretical Physics, UCSB

Electron glass model (Efros)

$$
\mathcal{H}=\frac{e^{2}}{2 \kappa} \sum_{i \neq j}\left(n_{i}-K\right) \frac{1}{r_{i j}}\left(n_{j}-K\right)+W \sum_{i} n_{i} \varphi_{i} \quad \sum_{i=1}^{N} n_{i}=K N
$$

I. Inspired from "classical impurity band" for compensated semiconductors.
© Relevant for other materials? (amorphous semiconductors, granular metals)

Outline:

Phase diagram and existence of an equilibrium glass phase
Shape of the Coulomb gap in 3D
\& Pair density of states and polaronic shift
© (Avalanches)
M. Goethe and MP, Phys. Rev. Lett. 103, 045702 (2009)

Ann. Phys. (Berlin) 18, 868 (2009)

Electron glass model (Efros)

$$
\mathcal{H}=\frac{e^{2}}{2 \kappa} \sum_{i \neq j}\left(n_{i}-K\right) \frac{1}{r_{i j}}\left(n_{j}-K\right)+W \sum_{i} n_{i} \varphi_{i} \quad \sum_{i=1}^{N} n_{i}=K N
$$

Outline:

Phase diagram and existence of an equilibrium glass phase
Shape of the Coulomb gap in 3D
Pair density of states and polaronic shift
(Avalanches)

Electron glass model (Efros)

$$
\mathcal{H}=\frac{e^{2}}{2 \kappa} \sum_{i \neq j}\left(n_{i}-K\right) \frac{1}{r_{i j}}\left(n_{j}-K\right)+W \sum_{i} n_{i} \varphi_{i} \quad \sum_{i=1}^{N} n_{i}=K N
$$

Outline:

Phase diagram and existence of an equilibrium glass phase
Shape of the Coulomb gap in 3D
Pair density of states and polaronic shift
\& (Avalanches)
Simulation details:
© Cubic (3D) and square (2D) lattice
\& $K=1 / 2$
\& Gaussian distributed φ_{i}
© Computational methods:

1. Equilibrium Monte Carlo simulation (Parallel Tempering algorithm)
2. Local relaxation ($T=0$ quench) with one particle hops
e Infinite periodic system. Ewald sum (with dipole surface term in 3D)

Is there an equilibrium glass phase?

Ising spin glass

$\mathcal{H}=\sum_{(i, j)} J_{i j} S_{i} S_{j}-h \sum S_{i} \quad\left[J_{i j}\right]_{a v}=0$

Phase transition in 3D at $h=0$
(Palassini and Caracciolo, PRL 1999, Ballesteros et al., PRB 2000)
Parisi solution of the infinite-range SK model: $\exp (N)$ thermodynamic states

Electron glass
$\mathcal{H}=\sum_{i<j} \frac{1}{r_{i j}} n_{i} n_{j}+W \sum_{i} n_{i} \varphi_{i}$

$$
T_{\uparrow} \quad q^{a b}=\frac{1}{N} \sum_{i} n_{i}^{a} n_{i}^{b}
$$

Davies, Lee, Rice ('82)
W=0: Grannan and Yu ('93)

W
Mean field theory (3D): $T<T_{g} \sim 1 / \sqrt{W}$

Pankov and Dobrosavl jevic, 2005

Müller and Ioffe, 2005
Müller and Pankov, 2007

Experimental consequences:

- diverging nonlinear capacitance
- nonlinear screening (Baranovski et al. 1984)

Equilibrium Monte Carlo

- long range interaction
- sample averaging
- frustration
- low T -> very low acceptance
- critical slowing down
- supercritical slowing in the COP

Parallel Tempering algorithm

$$
\begin{aligned}
& T_{c}=0.1287 \pm 0.004 \\
& W=0
\end{aligned}
$$

(Möbius and Rössler 2003)

$$
W_{c}>0 \text { at } T=0 \text { (Möbius) }
$$

30 years CPU time, $L<=12$

Equilibration

1. Thermal averages not changing when tripling the \# of MCS

2. Necessary condition

$$
2 T N^{-1}\left[\left\langle\sum_{i} n_{i} \varphi_{i}\right\rangle\right]_{a v}=W\left(2 N^{-1} \sum^{N}\left[\left\langle n_{i}^{(a)} n_{i}^{(b)}\right\rangle\right]_{a v}-1\right)
$$

$$
T=0.0026
$$

Equilibration

3. Ground state reached with high frequency

4. Low energy states are Boltzmann-distributed

Numerical probes of the glass phase

$$
\begin{aligned}
T>T_{g} \quad & \left\langle n_{i} n_{j}\right\rangle-\left\langle n_{i}\right\rangle\left\langle n_{j}\right\rangle \sim \exp -r / \xi \\
T<T_{g} \quad & \left\langle n_{i} n_{j}\right\rangle_{\alpha}-\left\langle n_{i}\right\rangle_{\alpha}\left\langle n_{j}\right\rangle_{\alpha} \sim r_{i j}^{-\lambda} \rightarrow 0 \\
& \left(\left\langle n_{i} n_{j}\right\rangle-\left\langle n_{i}\right\rangle\left\langle n_{j}\right\rangle\right)^{2} \rightarrow \text { const. } r_{i j} \rightarrow \infty \\
& \langle\cdot\rangle=\sum_{\text {states } \alpha} w_{\alpha}\langle\cdot\rangle_{\alpha}
\end{aligned}
$$

Overlap distribution

Finite-size correlation length
F. Cooper, B. Freedman, and D. Preston, Nucl. Phys. B 210, 210 (1982) M. Palassini and S. Caracciolo, Phys. Rev. Lett. 82, 5128 (1999)

$$
\begin{aligned}
T>T_{g} & \frac{\xi_{L}^{G}}{L} \sim \frac{\xi}{L} \rightarrow 0 \quad \text { as } L \rightarrow \infty \\
T<T_{g} & \frac{\xi_{L}^{G}}{L} \sim L^{d / 2} \rightarrow \infty \\
T=T_{g} & \frac{\xi_{L}^{G}}{L} \rightarrow \text { const. }
\end{aligned}
$$

$$
\begin{aligned}
& \xi_{L}^{\mathrm{G}}=\frac{1}{2 \sin \left(\left|\mathbf{k}_{\min }\right| / 2\right)}\left(\frac{\chi_{L}^{\mathrm{G}}(0)}{\chi_{L}^{\mathrm{G}}\left(\mathbf{k}_{\min }\right)}-1\right)^{\frac{1}{2}} \\
& \chi_{L}^{\mathrm{G}}(\mathbf{k})=\frac{1}{L^{d}} \sum_{i, j}\left[\left(\left\langle n_{i} n_{j}\right\rangle-\left\langle n_{i}\right\rangle\left\langle n_{j}\right\rangle\right)^{2}\right]_{a v} e^{i \mathbf{k} \cdot \mathbf{r}_{i j}} \\
& \mathbf{k}_{\min }=(2 \pi / L, 0,0)
\end{aligned}
$$

$$
\frac{\xi_{L}^{\mathrm{G}}}{L}=f\left(\left(T-T_{g}\right) L^{1 / \nu}\right)
$$

Location of the transition to the charge-ordered phase and critical behavior

$$
\begin{aligned}
& \xi_{L}^{G}: \xi_{L} \\
& \left(\left\langle n_{i} n_{j}\right\rangle-\left\langle n_{i}\right\rangle\left\langle n_{j}\right\rangle\right)^{2}:\left\langle\sigma_{i} \sigma_{j}\right\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\chi_{\left|m_{s}\right|}=N\left[\left\langle m_{s}^{2}\right\rangle-\langle | m_{s}| \rangle^{2}\right]_{a v} & m_{s}=\frac{1}{N} \sum_{i} \sigma_{i} \\
M_{s}=\left[\langle | m_{s}| \rangle\right]_{a v} & \sigma_{i}=\left(2 n_{i}-1\right)(-1)^{x_{i}+y_{i}+z_{i}}
\end{array}
$$

The correlation length shows no sign of a glass phase down to extremely low temperatures

Similar results:
Surer, Katzgraber,
Zimanyi, Allgood, Blatter,
PRL 102, 067205 (2009)

The overlap distribution also shows no sign of a glass phase
Overlap

$$
q^{a b}=\frac{1}{N} \sum_{i}\left(2 n_{i}^{a}-1\right)\left(2 n_{i}^{b}-1\right) \quad P(q)=\left[\left\langle\delta\left(q^{a, b}-q\right)\right\rangle\right]_{a v}
$$

M.Goethe and MP, unpublished

The correlation length behaves similarly in 2D, 3D, and in the 3D RFIM

Proposal of a glass phase in the RFIM:
Mezard, Parisi, J. Phys. A23, L1229 (1990) Mezard, Young, Europhys. Lett. 18, 653(1992). Mezard, Monasson, Phys.Rev. B50, 7199(1994) Brezin, DeDominicis, Europhys. Lett. 44, 13(1998); Parisi, V.S.. Dotsenko, J. Phys. A25, 3143(1992)

Measurement of the correlation function in 2D

$$
C\left(\mathbf{r}_{i j}\right)=\left[\left(\left\langle n_{i} n_{j}\right\rangle-\left\langle n_{i}\right\rangle\left\langle n_{j}\right\rangle\right)^{2}\right]_{a v}
$$

The Coulomb gap

© Pollak (1970), Srinivasan (1971): the long-range Coulomb interaction depletes the single-particle density of states at the Fermi level
£. Efros-Shklovskii (1975):

$$
\epsilon_{i}=\sum_{j \neq i} \frac{n_{j}-K}{r_{i j}}+\varphi_{i}
$$

$$
\begin{gathered}
g(\epsilon)=\frac{1}{V} \sum_{i=1}^{N}\left[\left\langle\delta\left(\epsilon-\epsilon_{i}\right)\right\rangle\right]_{a v} \leq c_{d}|\epsilon-\mu|^{d-1} \\
|\epsilon-\mu|<\Delta \sim W^{-1 / 2}
\end{gathered}
$$

Variable-range hopping conductivity (assuming saturated bound d-1):

$$
\begin{array}{ll}
\text { Mott law } \\
\sigma=\sigma_{0} \exp -\left(\frac{T_{M}}{T}\right)^{1 / 4} & \text { Efros-Shklovskii law } \\
& \sigma=\sigma_{0} \exp -\left(\frac{T_{E S}}{T}\right)^{1 / 2}
\end{array}
$$

© Self consistent methods: $\quad c_{3}=3 / \pi, c_{2}=2 / \pi$ (Efros 1976, Baranovskii et al. 1978, Mogilyanskii and Raikh 1989)

8 Mean-field theory:

- saturated ES bound
(Müller and Pankov, 2007)
© Thermal filling of the gap: $g(\epsilon, T) \sim T^{d-1} \tilde{g}(|\epsilon| / T) \underset{\epsilon / T \ll 1}{\sim} T^{d-1}$

Experimental observation of the Coulomb gap

Massey and Lee, PRL 1995 (Si:B)
Conductivity

FIG. 3. Plot of $\log [\partial \ln (\rho) / \partial(1 / T)]$ vs $\log [T]$. The slope of the data gives the negative of the hopping exponent. The solid line is a linear fit to the range $1.5<T<10 \mathrm{~K}$. The dashed line is a linear fit in the range $0.3<T<0.8 \mathrm{~K}$. These lines intersect at 1.4 K .

Electron tunneling spectroscopy

Numerical studies of the Coulomb gap

$$
g(\epsilon)=c_{d}|\epsilon-\mu|^{\delta}
$$

Baranovskii, Efros, Gelmont, Shklovskii, J. Phys. C (1979)
Davies, Lee, Rice, PRB (1984)
Li, Phillips, PRB (1994). $\delta=2.38$ (3D)
Moebius, Richter, Drittler, PRB (1992) $\quad \delta=2.6 \pm 0.2$ (3D); 1.2 ± 0.1 (2D)
Sarvestani, Schreiber, Vojta, PRB (1995). $\delta=2.7$ (3D); 1.75 (2D)
Overlin, Wong, Yu, PRB (2004). $2.1 \leq \delta \leq 2.6$ (3D)

Determining the single particle DOS at finite T

1. Parallel tempering MC
2. Shift the chemical potential to reduce finite-size effects

3. Check relaxation to equilibrium

4. Use large disorder
5. Size and temperature scaling

Results at large disorder agree with saturated ES bound $\delta=2$. Crossover to a hard gap at low disorder.

$$
g(\epsilon, T) \sim T^{\delta} f(\epsilon / T)
$$

Results at large disorder agree with saturated ES bound $\delta=2$. Crossover to a hard gap at low disorder.

$g(\epsilon, T) \sim T^{\delta} f(\epsilon / T)$

Results at large disorder agree with saturated ES bound $\delta=2$. Crossover to a hard gap at low disorder.

Results at large disorder agree with saturated ES bound $\delta=2$. Crossover to a hard gap at low disorder.

Results at large disorder agree with saturated ES bound $\delta=2$. Crossover to a hard gap at low disorder.

With an infinite periodic system, finite size effects are stronger in 2D than in 3D (with vacuum surrounding media)

M.Goethe and MP, unpublished

Pseudo-ground state calculations confirm our Monte

 Carlo results

Comparison with recent numerical work

Unpublished data courtesy of Arnulf Möbius

Comparison with recent numerical work

Our data

Surer, Katzgraber, Zimanyi,
Allgood, Blatter, PRL 102, 067205

See also: Comment on the paper by Surer et al. by Möbius and Richter Phys. Rev. Lett. 105, 039701 (2010)

Hardening of the Coulomb gap due to the "polaron shift"

E Efros (1976) considers the stability of sites + soft pairs. Assuming that soft pairs have a finite $\operatorname{DOS} f(\omega)$ at low energy, he obtains:

$$
g(\epsilon) \leq g_{0} \exp \left[-\left(\frac{a \Delta}{\epsilon}\right)^{\frac{1}{2}}\right]
$$

Baranovskii et al. (JETP, 1980) improved the argument and propose

$$
g(\epsilon) \leq g_{0} \exp \left[-\left(\frac{a \Delta}{\epsilon}\right) /(\ln (B / \epsilon))^{7 / 4}\right]
$$

by considering:

- stability with respect to simultaneous flipping of many dipoles
- the angles in the dipolar interaction
- the depletion of the pair DOS due to dipole-dipole interaction, which gives

$$
f(\omega) \propto \frac{1}{\ln (\Delta / \omega)}
$$

Why do we observe $g(\epsilon) \sim|\epsilon|^{2}$ then?

Soft sites (lenergyl < 0.1) and soft dipoles (lenergyl < 0.1; size <= 3) in a L=30 sample

$$
\left.\omega_{i j}=\epsilon_{j}-\epsilon_{i}-1 / r_{i j} \quad h_{L}(\omega, r)=\frac{1}{N} \sum_{(i j), r_{i, i}=r}\left[\left\langle\delta\left(\omega-\omega_{i j}\right)\right)\right\rangle\right]_{a v}
$$

$f_{L}(\omega, R)=\sum_{r \leq R} h_{L}(\omega, r)$

specific heat

Summary

- no evidence for an equilibrium glass phase in 3D
- similar correlations in 2D and 3D
- characterization of the charge order phase transition
- saturated ES bound in 3D and 2D
- hardening of the gap only at unmeasurably small scales

Thank you

Results in two dimensions agree with $\delta=1$ with crossover to larger δ at small disorder

M.Goethe and MP, unpublished

Crossover in 2D already observed by Pikus and Efros (1994)

Phase transition fluid / charge-ordered phase

	γ / ν	$\bar{\gamma} / \nu$	β / ν	ν
Coulomb glass	$1.69(17)$	$2.89(9)$	$0.06(4)$	$1.11(12)$
RFIM	$1.44(12)$	$2.93(11)$	$0.011(4)$	$1.37(9)$

$\beta / \nu, \bar{\gamma} / \nu \quad$ from quotient method for $\quad M_{s}, \quad \bar{\chi}_{L}=N\left[\left\langle m_{s}{ }^{2}\right\rangle\right]_{a v}$
$\gamma / \nu \quad$ from divergence of $\quad \chi_{\left|m_{s}\right|}=N\left[\left\langle m_{s}^{2}\right\rangle-\langle | m_{s}| \rangle^{2}\right]_{a v}$
ν from mod. hyperscaling $\quad \nu=\frac{2-\alpha}{d+\gamma / \nu-\bar{\gamma} / \nu}$ assuming $\alpha=0$

Transition in RFIM universailty class
-> Interaction is effectively short-range

