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Electron glass model (&fros)

quenched random potential
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@ Inspired from “classical impurity band” for compensated semiconductors.

© s .

® Relevant for other materials? (amorphous semiconductors, granular metals)

Outline:

S Phase diagram and existence of an equilibrium glass phase
S Shape of the Coulomb gap in 3D

S Pair density of states and polaronic shift

$ (Avalanches)

M. Goethe and MP, Phys. Rev. Lett. 103, 045702 (2009)
Ann. Phys. (Berlin) 18, 868 (2009)
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Electron glass model (&fros)

quenched random potential
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QOutline:

% Phase diagram and existence of an equilibrium glass phase
® Shape of the Coulomb gap in 3D

 Pair density of states and polaronic shift

$ (Avalanches)

Simulation details:

*

-

Cubic (3D) and square (2D) lattice

S K=1/2

S Gaussian distributed ¥©i

S Computational methods:
1. Equilibrium Monte Carlo simulation (Parallel Tempering algorithm)
2. Local relaxation (T=0 quench) with one particle hops

$ Infinite periodic system. Ewald sum (with dipole surface term in 3D)
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Is there an equilibrium glass phase?

Ising spin glass Electron glass
1
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P(q)4 P(q)¢ “*~-..Almeida-Thouless line
~~~~~~~ Pankov and Dobrosavljevic, 2005
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Phase transition in 3D at h=0 :
(Palassini and Caracciolo, PRL 1999, Ballesteros et al., PRB 2000)
& . : . Experimental consequences:
Parisi solution of the infinite-range SK s . .
. - diverging nonlinear capacitance
model: exp(N) thermodynamic states - nonlinear screening (Baranovski et al. 1984)
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Equilibrium Monte Carlo

T, = 0.1287 + 0.004
W =0
& long range interaction (Mobius and Rossler 2003)
- sample averaging
- frustration
- low T -> very low acceptance
- critical slowing down
- supercritical slowing

in the COP

Parallel Tempering algorithm
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W.>0 at T =0 (Mobius)

30 years CPU time, L<=12
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Equilibration

1. Thermal averages not changing when tripling the # of MCS

2. Necessary condition

1T = 0.0026
0.3

gl fieg
205 samples ¥~

Metrop., gL

S

e

RS
.

-0.002

B A L1 el = ----=EF
Metrop., rhs _ | D

-0.004 Lrowt o ovii 0. 0,02 bt
10 10°

10250t g0 E 500 O L s L L ARy | T eh et oo [ 14
Number of Monte Carlo sweeps Number of Monte Carlo sweeps

Tuesday, August 24, 2010



Equilibration

3. Ground state reached 4. Low energy states are
with high frequency Boltzmann-distributed

10° MC sweeps

C(T) exp[ -(E-Egroung) / T
T =0.0025
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Numerical probes of the glass phase
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F. Cooper, B. Freedman, and D. Preston, Nucl. Phys. B 210, 210 (1982)
M. Palassini and S. Caracciolo, Phys. Rev. Lett. 82, 5128 (1999)
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Location of the fransition to the charge-ordered
phase and critical behavior
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The correlation length shows no sign of a glass
phase down to extremely low tfemperatures

Similar results:

Surer, Katzgraber,
Zimanyi, Allgood, Blatter,

PRL 102, 067205 (2009)
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The overlap distribution also shows no sign of a

glass phase

)
Overlap ¢ = = Z(Qngf N0
Pankov & Dobrosavl jevic

PLASMA o038 .
2| _ Overlap distribution. W=1 T=0.035

0.60

CHARGE ORDER

COULOMB GLASS

1
0.2

W/ €,

M.Goethe and MP, unpublished
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The correlation length behaves similarly in 2D,
3D, and in the 3D RFIM

Random Field Ising model

0O 0.05 0.1 0.15 O.2T0.25 03 035 04

Proposal of a glass phase in the RFIM:

Mezard, Parisi, J. Phys. A23, L1229 (1990)
Mezard, Young, Europhys. Lett. 18, 653(1992).
Mezard, Monasson, Phys.Rev. B50, 7199(1994)
Brezin, DeDominicis, Europhys. Lett. 44, 13(1998);
Parisi, V.S.. Dotsenko, J. Phys. A25, 3143(1992)
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Measurement of the correlation function in 2D

C(riz) = [({(ning) — (ns){15))* lav

T=0.014 <~
0.113 =~
0.3

+ error)

|
|
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The Coulomb gap

® Pollak (1970), Srinivasan (1971): the long-range Coulomb interaction depletes the
single-particle density of states at the Fermi level

1 N

® Efros-Shklovskii (1975): g(e) = % Z[(é(e — & W oa e iSey e = it

iy TG =1 e
JF#t

 Variable-range hopping conductivity (assuming saturated bound d-1):

Mott law Efros-Shklovskii law
Tos 1/4 > Too 1/2
- (% == (1)
S Self consistent methods: Eo— 5 /TGy =N

(Efros 1976, Baranovskii et al. 1978, Mogilyanskii and Raikh 1989)

€ Mean-field theory: - saturated ES bound
(Miiller and Pankov, 2007) - gap width A~ T,

& Thermal filling of the gap: g(€,T) ~ T §(le|/T) ~ T2
e/T <« 1
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Experimental observation of the Coulomb gap

Massey and Lee, PRL 1995 (Si:B)
Conductivity

VOLUME 86, NUMBER 9 PHYSICAL REVIEW LETTERS 26 FEBRUARY 2001

SiB Electronic Correlation Effects and the Coulomb Gap at Finite Temperature

B. Sandow,! K. Gloos,2? R. Rentzsch,! A.N. Ionov,* and W. Schirmacher®
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FIG. 3. Plot of log[dln(p)/d(1/T)] vs log[T]. The slope of
the data gives the negative of the hopping exponent. The solid
line is a linear fit to the range 1.5 < 7 < 10 K. The dashed
line is a linear fit in the range 0.3 < 7' << 0.8 K. These lines

16 K 1K 0.2K
intersect at 1.4 K. 1

00 05 1.0

1.5
T-0.25 (K-0.25)
FIG. 1. dI/dU vs U spectra of the Ge sample with N, = L i 1/4
1.26 X 10" cm~? at the indicated temperatures. FIG. 21./7 Electncgl resistance of the l?ull\.Ge sample R vs T
and T'/*, respectively. The dashed line is a fit to the ES law
with Tgs = 0.40 K. Ny = 1.26 X 10" cm 3.
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Electron tunneling spectroscopy
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Numerical studies of the Coulomb gap  g(€) = cqle — |’

Baranovskii, Efros, Gelmont, Shklovskii, J. Phys. C (1979)

Davies, Lee, Rice, PRB (1984)

Li, Phillips, PRB (1994). 5 =2.38 (3D)

Moebius, Richter, Drittler, PRB (1992) §=26+0.2 (3D);1.2+£0.1 (2D)
Sarvestani, Schreiber, Vojta, PRB (1995). §=2.7 (3D);1.75 (2D)
Overlin, Wong, Yu, PRB (2004). 2.1 <4 <2.6 (3D)

M.Goethe and MP
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Determining the single particle DOS at finite T

1. Parallel tempering MC 3. Check relaxation to equilibrium

2. Shift the chemical potential to
reduce finite-size effects

u-average

T=0.0077
0.0172
0.035

0,126 4. Use large disorder
0.24

5. Size and temperature scaling
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Results at large disorder agree with saturated ES
bound ¢ =2. Crossover to a hard gap at low disorder.

T=0.0026
0.0049
0.0077
0.0105
0.0138
0.017
0.025
0.035

5
g(e,T) ~T f(e/T) Mogilyanskii and Raikh (1989)
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Results at large disorder agree with saturated ES

bound ¢ =2. Crossover to a hard gap at low disorder.
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T=0.0026
0.0049
0.0077
0.0105
0.0138
0.017
0.025
0.035

g(e,T) ~ T f(e/T)

Mogilyanskii and Raikh (1989)




Results at large disorder agree with saturated ES
bound ¢ =2. Crossover to a hard gap at low disorder.

T=0.010 —+— |
0.017 —=— |
0.025 + |
0.035 - ]
0.047 —=— |
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Results at large disorder agree with saturated ES
bound 6 =2. Crossover to a hard gap at low disorder.

slope 0.8
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Results at large disorder agree with saturated ES
bound 6 =2. Crossover to a hard gap at low disorder.
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With an infinite periodic system, finite size effects are stronger in
2D than in 3D (with vacuum surrounding media)

L= 4
L= 6
L= 8
L=10
metal
2 Dimensions

s = shortest-image-distance / L

M.Goethe and MP, unpublished
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Pseudo-ground state calculations confirm our Monte
Carlo results

W =1
L =10
205 samples
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Comparison with recent numerical work

W =4 L=6

8

T =0.0077 10
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Pseudo-ground state, L= 30

Moebius. PGS, L= 200
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0.001
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04" 05 0z A 0 Unpublished data courtesy of Arnulf Mobius
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Comparison with recent numerical work

Surer, Katzgraber, Zimanyi,
Our data Allgood, Blatter, PRL 102, 067205

See also: Comment on the paper by Surer et al.
by Mobius and Richter Phys. Rev. Lett. 105, 039701 (2010)
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Hardening of the Coulomb gap due to the “polaron shift”

% Efros (1976) considers the stability of sites + soft pairs. Assuming that soft palrs
have a finite DOS f(v) at low energy, he obtains: a/\
g(€) < goexp[— (—) ]

$ Baranovskii et al. (JETP, 1980) improved the argument and propose

o(6) < goexol~ (“2 ) in(B/0)/*

by considering:
- stability with respect to simultaneous flipping of many dipoles
- the angles in the dipolar interaction
- the depletion of the pair DOS due to dipole-dipole interaction,
which gives 1

eckaime
Why do we observe g(e) ~ |¢|° then?
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Soft sites (lenergyl < 0.1) and soft dipoles (lenergyl < 0.1; size <= 3)
in a L=30 sample
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Single-particle DOS -4
Pair DOS, R

max=1 ®
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0.4 0.5

Exchange MC; L=10

T=0 quench; L= 14
T=0 quench; L=22
T=0 quench; L= 30




specific heat
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Summary

- no evidence for an equilibrium glass phase in 3D

- similar correlations in 2D and 3D

- characterization of the charge order phase transition

- saturated ES bound in 3D and 2D

- hardening of the gap only at unmeasurably small scales
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Thank you
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Results in two dimensions agree with § = 1
with crossover to larger ¢ at small disorder

2D W=2
T =0.0105

W=0.5 L=28 =
W=1.0 L=28 4
W=2.0 L=28 +e-
W=4.0 L=80
slope =145 —
1.15 —
1.00 —
1.00

e o W1/$Iope

M.Goethe and MP, unpublished

Crossover in 2D already observed by Pikus and Efros (1994)
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Phase transition fluid / charge-ordered phase

y/v y/v B/v v
Coulomb glass  1.69(17)  2.89(9) 0.06(4) Jid AR
RFIM 1.44(12)  2.93(11) 0.011(4) 1.37(9) PEENEVIREIESER NN P!

Blv, /v from quotient method for My x1 &= N[(mﬁ)]av

W/V from divergence of  X|m.| = N{{m3) — {Ims])*]av
S 2 kel
R s [ Y

v from mod. hyperscaling % assuming « =0

Transition in RFIM universailty class

-> Interaction is effectively short-range
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