
Numerical simulations of 
the electron glass 
(in and out of equilibrium)

Matteo Palassini
Universitat de Barcelona

with 

Martin Goethe         

August 19, 2010. Program “Electron Glasses”, Kavli Institute for Theoretical Physics, UCSB  

Tuesday, August 24, 2010

http://bifi.es/events/cel2010/program.html#abs_palassini
http://bifi.es/events/cel2010/program.html#abs_palassini
http://bifi.es/events/cel2010/program.html#abs_palassini
http://bifi.es/events/cel2010/program.html#abs_palassini
http://bifi.es/events/cel2010/program.html#abs_palassini
http://bifi.es/events/cel2010/program.html#abs_palassini


Electron glass model (Efros)

 Inspired from “classical impurity band” for compensated semiconductors. 
 Relevant for other materials? (amorphous semiconductors, granular metals)
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Outline: 

 Phase diagram and existence of an equilibrium glass phase
 Shape of the Coulomb gap in 3D
 Pair density of states and polaronic shift
 (Avalanches)

 M. Goethe and MP,  Phys. Rev. Lett. 103, 045702 (2009)
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Simulation details:

 Cubic (3D) and square (2D) lattice 
 
 Gaussian distributed 
 Computational methods:

   1. Equilibrium Monte Carlo simulation (Parallel Tempering algorithm)
   2. Local relaxation (T=0 quench) with one particle hops

 Infinite periodic system. Ewald sum (with dipole surface term in 3D)
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FIG. 4: (Color online) Charge-order correlation length along
path BC in Fig. 1. Top inset: order parameter Ms along paths
AB, BC, and DE. Bottom inset: specific heat along path BC.

GP does not exist above the dashed line in Fig. 1.
Critical behavior – Since at W = 0 the fluid-COP tran-

sition has a positive specific-heat exponent [23], disorder
is relevant [34] and the W != 0 transition will be gov-
erned by a random fixed point which, by analogy with the
RFIM [12], we expect to be at zero temperature [35]. As-
suming the transition is second order, as we ascertained
by inspecting the distribution of ms for individual sam-
ples, we obtain the critical exponents in Table I. We es-
timated β/ν and γ̄/ν with the quotient method [36] for
the observables Ms and χ̄L = N [〈ms

2〉]av respectively
[the quotient estimates from (L, L′) = (6, 8), (6, 10) and
(8, 10) agree within the errors], while γ/ν was obtained
by fitting aLγ/ν to the height of the peak of the sus-
ceptibility N [〈ms

2〉 − 〈|ms|〉2]av (data not shown). The
specific heat cL = 1/(NT 2)[〈H2〉− 〈H〉2]av shows a peak
that increases slowly with L (Fig. 4, bottom inset), which
suggests either α < 0 or a logarithmic divergence (α = 0).
We could not estimate ν directly in a reliable way, but
we obtain ν = 1.11(12) from the modified hyperscaling
relation [35] (d− θ)ν = 2−α, assuming α = 0 and using
θ = γ̄/ν−γ/ν = 1.20(20). As shown in Table I, the criti-
cal exponents agree fairly well with the known values for
the RFIM [37], which suggests that the system remains
effectively short-range near the transition.

To conclude, our results show that, although mean-
field theory seems to capture correctly the DOS near the
Coulomb gap, the interaction remains well screened and
the correlations remain short-range down to rather low
temperatures. If an equilibrium glass phase exists, its
onset must be at exceptionally low temperatures.

TABLE I: Critical exponents for the fluid-COP transition
along BC in Fig. 1, compared with the RFIM values [37].

γ/ν γ̄/ν β/ν ν

Coulomb glass 1.69(17) 2.89(15) 0.06(3) 1.11(12)

RFIM 1.44(12) 2.93(11) 0.011(3) 1.37(9)
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Is there an equilibrium glass phase?

Parisi solution of the infinite-range SK 
model: exp(N) thermodynamic states 

    Ising spin glass                                Electron glass
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Mean field theory (3D):

Pankov and Dobrosavljevic, 2005
Müller and Ioffe, 2005

Müller and Pankov, 2007

Experimental consequences:
   - diverging nonlinear capacitance
    - nonlinear screening (Baranovski et al. 1984)

T < Tg ∼ 1/
√

W

The lowest temperature is very near the glass transition
temperature (see our phase diagram, Fig. 2). As we can see,
our theory captures in surprisingly quantitative detail the
formation of the plasma dip in the fluid phase. In the past,
this phenomenon has often been confused with the forma-
tion of the true ES gap which, as we argue below, only
emerges within the glassy phase. Finally, we test the limits
of our theory by computing the DOS for the 2D CG in the
absence of disorder. Even in this extreme case, we repro-
duce semiquantitatively exact numerical results of Ref. [8].

Glassy ordering.—To examine the stability of the fluid
phase to glassy ordering, we examine the Baym-Kadanoff
(BK) functional !BK!q̂". This is a functional of the corre-
lator q̂, which yields the exact equations of motion at the
saddle point, where it coincides with the exact free energy.
To obtain our self-consistency conditions, a local approxi-
mation [13] is made on the two particle irreducible part of
!BK. In this formulation, the stability of our fluid RS
solution can be obtained by a standard replica symmetry
breaking (RSB) analysis [15] of the BK functional at the
saddle point. The corresponding RSB instability criterion
takes the form
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Here, !ij is the density-density correlation function com-
puted for a fixed realization of disorder, i.e., !ij %
h"ni"njiT # h"niiTh"njiT . The left-hand side of Eq. (9)
is nothing but 1=

P

j!!2
ij"dis, the inverse of the glass suscep-

tibility, a quantity which diverges at the transition. In terms
of the RS solution the RSB condition reads

q
"

% 1

16

Z

D!x"cosh#4
!
1

2
x#Weff

"

: (10)

As an illustration, we present results for the CG on a 3D
cubic lattice, and in Fig. 2 we plot the corresponding phase
diagrams obtained by numerically solving our self-
consistency conditions. At small disorder and temperature
T & 0:95 (which is in satisfactory agreement with the
exact value [16] Tc % 0:129) the system enters the charge
ordered phase. Stronger disorder suppresses the charge
ordering, and the system can exist either in a liquid phase
(at higher temperature) or in the glass phase (at lower T).
The liquid is separated from the glass by the RSB line, also
known as the Almeida-Thouless [15] line. We emphasize
that the ordering temperature we predict is roughly an
order of magnitude smaller than the Coulomb energy, in
remarkable quantitative agreement with all available simu-
lation results [3–5,8].

This interesting fact can be traced down to the screening
of the Coulomb interaction. Indeed, the overall energy
scale characterizing the screened Coulomb potential
Vscr'r( % "0 expf#r=‘scrg=r is roughly an order of magni-
tude smaller than the bare Coulomb energy. The corre-
sponding screening length ‘scr % !'!#1 $"c(='#"0("1=2
[shown for W % '2

###

3
p

(#1 in the inset of Fig. 2] decreases
(albeit weakly) with temperature and remains short
throughout the fluid (RS) phase. This observation also

d=3d=3

FIG. 1 (color online). Our analytical predictions for the single-
particle density of states (solid lines) are found to be in excellent
quantitative agreement with simulation results (dashed lines),
with no adjustable parameters. Shown are results for the three-
dimensional case studied in Ref. [7], corresponding to W %
1='2

###

3
p

(, and temperatures T % 0:4, 0.2, 0.1, and 0.05 (top
panel), and the two-dimensional model of Ref. [8], correspond-
ing to W % 0, T % 0:1, and K % 0:2. All lines correspond to the
plasma phase, while T % 0:05 is very close to the glass transition
temperature.
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FIG. 2 (color online). Three-dimensional Coulomb glass phase
diagram. The full horizontal line indicates the RSB instability
and the dotted line shows where the RS entropy turns negative.
The screening length in the inset is plotted for the same disorder
and the range of temperatures (fluid phase) as in Fig. 1.
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Phase transition in 3D at h=0  

(Palassini and Caracciolo, PRL 1999, Ballesteros et al., PRB 2000)
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- sample averaging
- frustration
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- critical slowing down
- supercritical slowing 
  in the COP

Parallel Tempering algorithm

Equilibrium Monte Carlo

T = 0

(Möbius and Rössler 2003)           

W = 0
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1. Thermal averages not changing when tripling the # of MCS
 
2. Necessary condition

Equilibration

T = 0.0026
adp header will be provided by the publisher 3
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Fig. 1 Equilibration plots at the lowest temperature simulated, T = 0.0026. The l.h.s. (r.h.s.) of Eq.(2) is shown in

green (red), and the glass correlation length divided byL in black. The insets show a zoom of the convergence region.

For L = 6, the data for a Metropolis run are also shown: notice that they remain far from convergence. ForL = 10,

we performed a longer run (3 × 10
5 MCS) for a subset of the samples to check for equilibration. Since ξG

L is seen to

increase little from 10
5 to 3 × 10

5, simulations were stopped at 10
5 MCS for the other samples.

parameter and q = N−1
∑

i(2n(a)
i − 1)(2n(b)

i − 1) is the overlap). If there were a glass phase between the
COP and the fluid phase, χ|q| would diverge at a higher temperature.

Fig.4 shows ξG
L from simulations at constantW in 3D and 2D. The absence of a crossing for ξG

L /L in
3D (panel a) and 2D (not shown) provides evidence against a glass transition. The 2D results agree with the

conclusions of Ref.[10] but probe lower temperatures. Both in 3D (panel b) and 2D (panel c), ξG
L increases

rapidly near the transition, and can be fitted by a power-law divergence as T → 0. This may be explained
simply by particles in the Coulomb gap being able to hop to distances of order 1/T , which sets the screen-
ing length, or by large many-particle correlated regions. Notice that the numerical value of ξG

L is compa-

rable in 2D and 3D although the linear size is larger in 2D, perhaps suggesting larger finite-size effects in

2D. In order to test the effect of the long-range interaction, we simulated the short-range antiferromagnetic

Random Field Ising model (RFIM), obtained by setting the interaction to zero beyond nearest neighbors

in Eq.(1). We choose W = 6/(Madelung const.) so that the value of N−1[〈
∑

i niϕi〉]av is close to the

value for the CG atW = 1, as shown in the inset of Fig.5. At large temperatures both models approach the
non-interacting result N−1[〈

∑

i niϕi〉]av = (2π)−1/2
∫ ∞
−∞ dt t exp(−t2/2)/[exp(tW/T ) + 1]. By com-

paring Figs.4 and 5, we see that for the RFIM the correlation length is significantly smaller, which suggests

that larger correlated regions arise in the CG because of the long-range interaction. We note that a glass

transition was predicted also for the RFIM [18]. Our data show no trace of such a transition, but we did

not perform simulations approaching the ordered phase (the equivalent of the COP) as for the CG.

We conclude by noting that while in mean-field theory [6] the glass phase is linked to the Efros-

Shklovskii quadradic shape of the Coulomb gap in the single-particle density of states [19], our results

provide strong support for the Efros-Shklovskii law [15] but not for a glass phase. We refer to Ref.[15] for

a discussion of this point and the critical behaviour of the fluid-COP transition.

We thank A. Efros, B. Shklovskii, M. Müller, A. Möbius, G. Zimanyi for discussions. Work supported

by Generalitat de Catalunya and MICINN (FIS-2006-13321-C02-01, AP2007-01005). The computations

were performed on the BSC-RES node at Universidad de Cantabria and the Albeniz cluster at UB.
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Equilibration
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Numerical probes of the glass phase

α β
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Location of the transition to the charge-ordered 
phase and critical behavior
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FIG. 4: (Color online) Charge-order correlation length along
path BC in Fig. 1. Top inset: order parameter Ms along paths
AB, BC, and DE. Bottom inset: specific heat along path BC.

TABLE I: Critical exponents for the fluid-COP transition
along BC in Fig. 1, compared with the RFIM values [37].

γ/ν γ̄/ν β/ν ν

Coulomb glass 1.69(17) 2.89(5) 0.06(3) 1.11(12)

RFIM 1.44(12) 2.93(11) 0.011(3) 1.37(9)

We could not estimate ν directly in a reliable way, but
we obtain ν = 1.11(12) from the modified hyperscaling
relation [35] (d− θ)ν = 2−α, assuming α = 0 and using
θ = γ̄/ν−γ/ν = 1.20(20). As shown in Table I, the criti-
cal exponents agree fairly well with the known values for
the RFIM [37], which suggests that the system remains
effectively short-range near the transition.

To conclude, our results show that, although mean-
field theory seems to capture correctly the DOS near the
Coulomb gap, the interaction remains well screened and
the correlations remain short-range down to rather low
temperatures. If an equilibrium glass phase exists, its
onset must be at exceptionally low temperatures.
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The correlation length shows no sign of a glass 
phase down to extremely low temperatures
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The overlap distribution also shows no sign of a 
glass phase
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The lowest temperature is very near the glass transition
temperature (see our phase diagram, Fig. 2). As we can see,
our theory captures in surprisingly quantitative detail the
formation of the plasma dip in the fluid phase. In the past,
this phenomenon has often been confused with the forma-
tion of the true ES gap which, as we argue below, only
emerges within the glassy phase. Finally, we test the limits
of our theory by computing the DOS for the 2D CG in the
absence of disorder. Even in this extreme case, we repro-
duce semiquantitatively exact numerical results of Ref. [8].

Glassy ordering.—To examine the stability of the fluid
phase to glassy ordering, we examine the Baym-Kadanoff
(BK) functional !BK!q̂". This is a functional of the corre-
lator q̂, which yields the exact equations of motion at the
saddle point, where it coincides with the exact free energy.
To obtain our self-consistency conditions, a local approxi-
mation [13] is made on the two particle irreducible part of
!BK. In this formulation, the stability of our fluid RS
solution can be obtained by a standard replica symmetry
breaking (RSB) analysis [15] of the BK functional at the
saddle point. The corresponding RSB instability criterion
takes the form

1

!!2
ii"dis

# 1

!!ii"2dis
$ 1

P

j
!!ij"2dis

% 0: (9)

Here, !ij is the density-density correlation function com-
puted for a fixed realization of disorder, i.e., !ij %
h"ni"njiT # h"niiTh"njiT . The left-hand side of Eq. (9)
is nothing but 1=

P

j!!2
ij"dis, the inverse of the glass suscep-

tibility, a quantity which diverges at the transition. In terms
of the RS solution the RSB condition reads

q
"

% 1

16

Z

D!x"cosh#4
!
1

2
x#Weff

"

: (10)

As an illustration, we present results for the CG on a 3D
cubic lattice, and in Fig. 2 we plot the corresponding phase
diagrams obtained by numerically solving our self-
consistency conditions. At small disorder and temperature
T & 0:95 (which is in satisfactory agreement with the
exact value [16] Tc % 0:129) the system enters the charge
ordered phase. Stronger disorder suppresses the charge
ordering, and the system can exist either in a liquid phase
(at higher temperature) or in the glass phase (at lower T).
The liquid is separated from the glass by the RSB line, also
known as the Almeida-Thouless [15] line. We emphasize
that the ordering temperature we predict is roughly an
order of magnitude smaller than the Coulomb energy, in
remarkable quantitative agreement with all available simu-
lation results [3–5,8].

This interesting fact can be traced down to the screening
of the Coulomb interaction. Indeed, the overall energy
scale characterizing the screened Coulomb potential
Vscr'r( % "0 expf#r=‘scrg=r is roughly an order of magni-
tude smaller than the bare Coulomb energy. The corre-
sponding screening length ‘scr % !'!#1 $"c(='#"0("1=2
[shown for W % '2

###

3
p

(#1 in the inset of Fig. 2] decreases
(albeit weakly) with temperature and remains short
throughout the fluid (RS) phase. This observation also

d=3d=3

FIG. 1 (color online). Our analytical predictions for the single-
particle density of states (solid lines) are found to be in excellent
quantitative agreement with simulation results (dashed lines),
with no adjustable parameters. Shown are results for the three-
dimensional case studied in Ref. [7], corresponding to W %
1='2

###

3
p

(, and temperatures T % 0:4, 0.2, 0.1, and 0.05 (top
panel), and the two-dimensional model of Ref. [8], correspond-
ing to W % 0, T % 0:1, and K % 0:2. All lines correspond to the
plasma phase, while T % 0:05 is very close to the glass transition
temperature.
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FIG. 2 (color online). Three-dimensional Coulomb glass phase
diagram. The full horizontal line indicates the RSB instability
and the dotted line shows where the RS entropy turns negative.
The screening length in the inset is plotted for the same disorder
and the range of temperatures (fluid phase) as in Fig. 1.
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The correlation length behaves similarly in 2D, 
3D, and in the 3D RFIM

4 M. Goethe and M. Palassini: Numerical study of the equilibrium thermodynamics of the Coulomb glass
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Fig. 2 Phase diagram of the Coulomb glass and

simulation paths (From Ref.[14]).
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Fig. 3 Glass correlation length along path BC.

The crossing occurs at the fluid-COP transition.

The insets show the charge-order and spin-glass

susceptibilities (see main text).
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Fig. 4 Glass correlation length at constantW in

3D (a and b, from Ref.[14]), and 2D (c).
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2

a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

Measurement of the correlation function in 2D

C(rij) = [(〈ninj〉 − 〈ni〉〈nj〉)2 ]av
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 Pollak (1970), Srinivasan (1971): the long-range Coulomb interaction depletes the 
single-particle density of states at the Fermi level

The Coulomb gap

εi =
∑

j !=i

nj −K

rij
+ ϕi

 Efros-Shklovskii (1975):

|ε− µ|" ∆ ∼W−1/2

g(ε) =
1
V

N∑

i=1

[〈δ(ε − εi)〉]av ≤ cd |ε− µ|d−1

 Self consistent methods:
    (Efros 1976, Baranovskii et al. 1978, Mogilyanskii and Raikh 1989)

c3 = 3/π, c2 = 2/π

 Thermal filling of the gap: ∼ T d−1

ε/T ! 1
g(ε, T ) ∼ T d−1 g̃(|ε|/T )

 Mean-field theory:           - saturated ES bound   

   (Müller and Pankov, 2007)      - gap width ∆ ∼ Tg

Mott law                                 Efros-Shklovskii law 

 Variable-range hopping conductivity (assuming saturated bound d-1):

σ = σ0 exp−
(

TM

T

)1/4

σ = σ0 exp−
(

TES

T

)1/2
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Experimental observation of the Coulomb gap
Massey and Lee, PRL 1995  (Si:B)

Electron tunneling spectroscopy

Conductivity

VOLUME 86, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 FEBRUARY 2001
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FIG. 2. Electrical resistance of the bulk Ge sample R vs T 1!4

and T 1!2, respectively. The dashed line is a fit to the ES law
with TES ! 0.40 K. Nd ! 1.26 3 1017 cm23.

part at high voltages, jUj . 4 mV. Several possibili-
ties were tried, with only slight variation of the final re-
sult. According to Ref. [18], this high-energy tail can
be roughly described by g"E# ~ 1 1

p

"E 2 EF#!d. In
this model, the parameter d represents a correlation en-
ergy, which is almost independent of impurity concentra-
tion. From our experiments d $ 10 meV is a rather large
value when compared to the results for Si:B [18]. Alterna-
tively, a Schottky-type behavior was used with dI!dU ~
exp"U!U00#. The parameter U00 may then represent the
properties of an additional barrier due to the depletion
layer. As we do not know which of the two possibilities is
correct, we normalize the spectra at low temperatures with
respect to that corresponding to the highest temperature.
The shape of those normalized spectra is almost flat out-
side the Coulomb-gap anomaly. All curves are then fitted
using

g"E, T # ~ g"T # 1 %1 2 g"T#&

3
jE 2 EFjs

%DCG"T #!2&s 1 jE 2 EFjs
. (1)

The parameter g describes a “residual” DOS at the Fermi
level and DCG is the width of the Coulomb gap (FWHM).
The DOS derived by ES is recovered when g ! 0 and
s ! 2 [3,6].

The experimental DOS of our samples strongly deviates
from the simple square law derived by ES [3,6], and which
was also found experimentally for Si:B [16–18]. Taking
into account the Fermi distribution and the expression
Eq. (1) for the DOS on both sides of the junction, our
analysis yields s ! 3 for the sample with Nd ! 1.26 3
1017 cm23. Figure 3 shows how DCG and g depend on
temperature. Both saturate at low temperatures. Analytical
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FIG. 3. Coulomb gap DCG and residual DOS g vs temperature
T derived from the spectra in Fig. 1.

as well as numerical simulations for nonmetallic disor-
dered systems have predicted several different relation-
ships: power laws g"E, T ! 0# ~ "E 2 EF#D21 [6,25]
and g"E, T ! 0# ~ "E 2 EF#2.760.1 [13] as well as an
exponential dependence g"E, T ! 0# ~ exp'2%D!"E 2
EF#&1!2( [26]. A power law with s ! 3 is close to the
theoretical value of s ! 2.7 in Ref. [13].

Our measured temperature dependence of the zero-bias
DOS reveals a power law g"EF, T # ~ Tx with an exponent
x ! 0.8. This differs from x ! 2.7 derived by [13], but it
agrees quite well with x ! 1 obtained by the simulations
of Ref. [14].

Because of the deviation of the experimental DOS from
the simple s ! 2 law the observed ES-type behavior of
the bulk resistivity needs an explanation. For a DOS vary-
ing as g"E# ~ "E 2 EF#s a temperature law lnR ~ T2a

with a ! "s 1 1#!"s 1 D 1 1# is expected [3,27]. For
s ! 3 and D ! 3 this yields a ! 0.57. This can hardly
be distinguished from a ! 0.5, but it can readily be dis-
tinguished from a ! 0.25.

To summarize, the tunnel conductance of small break
junctions of our germanium samples shows a minimum of
the DOS near the Fermi level. This minimum represents
the Coulomb correlation gap. Up to about 1 K, the width of
this anomaly depends only weakly on T . This corresponds
to the ES regime of the temperature dependence of the
variable-range hopping conductivity. Above about 1 K,
the anomaly smears out. Consequently, deviations from
the ES law occur with a different temperature dependence.
According to our interpretation, the observed crossover in
the temperature variation of the resistivity is not due to
the temperature-broadened range of hopping energies. It
rather originates from the suppression of the Coulomb gap
by thermal excitations.

This work was supported by the German SFB 252
Darmstadt/Frankfurt/Mainz and the Russian RFBR Grant
No. 00-02-16992.
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We have investigated the effect of the long-range Coulomb interaction on the one-particle excita-
tion spectrum of n-type germanium, using tunneling spectroscopy on mechanically controllable break
junctions. At low temperatures, the tunnel conductance shows a minimum at zero bias voltage due to
the Coulomb gap. Above 1 K, the gap is filled by thermal excitations. This behavior is reflected in
the variable-range hopping resistivity measured on the same samples: up to a few degrees Kelvin the
Efros-Shklovskii lnR ~ T21!2 law is obeyed, whereas at higher temperatures deviations from this law
occur. The type of crossover differs from that considered previously in the literature.

DOI: 10.1103/PhysRevLett.86.1845 PACS numbers: 73.40.Gk, 73.50.Dn, 73.61.Cw

The electronic density of states (DOS) near the Fermi
level is an important physical quantity for understanding
electrical transport mechanisms in strongly localized sys-
tems [1], such as impurity bands in doped semiconductors.
These consist of sites with random positions and random
energies [2,3]. At small impurity concentration Nd , the
electron wave function is localized with a localization ra-
dius a smaller than the average nearest-neighbor distance
N

21!3
d between sites. At low temperatures the electrical

resistivity of such systems is governed by variable-range
hopping (VRH), which means that the activation energy for
a hopping process decreases continuously with tempera-
ture [2,3]. The role of the intersite Coulomb interaction be-
tween electrons in the hopping regime was first addressed
by Pollak [4] and by Srinivasan [5]. They showed that
in localized systems the Coulomb interaction creates a
deep depletion of the one-particle DOS near the Fermi en-
ergy EF. Efros and Shklovskii (ES) called this depletion
“Coulomb gap” and showed that the DOS near EF varies as
g"E# ! g0jE 2 EFjD21 for dimensionalities D ! 2 and
D ! 3, respectively [3,6]. This leads to a VRH hopping
resistance R ~ exp"TES!T #1!2 [6,7], in contrast to Mott’s
R ~ exp"TM!T #1!4 law in D ! 3 [2] for which a constant
DOS g"E# ! g0 is assumed.

A crossover between these two temperature laws has
been predicted theoretically [3]. Indeed, there is ample ex-
perimental evidence for such a crossover [8–10], although
the temperature range where the Mott law is visible de-
pends on the material, especially on the dopant concen-
tration [11,12]. According to the traditional interpretation
of this crossover the energy range of the phonon-assisted
tunneling (hopping) becomes larger than the width of the
Coulomb gap DCG above the crossover temperature. In
this case the Coulomb gap does not affect the hopping re-
sistance, thus resulting in Mott’s law. However, another
kind of crossover from an ES-type to Mott-type tempera-
ture law may occur, namely the filling of the Coulomb gap

by thermal excitations. Such a filling of the Coulomb gap
with increasing temperature was predicted by Monte Carlo
simulations of a classical Coulomb glass [13–15]. More
recently, it was observed by tunneling spectroscopy on Si:B
samples near the metal-nonmetal transition [16–18]. The
temperature dependence of the DOS should, in turn, affect
the temperature dependence of the bulk resistivity. Sur-
prisingly, except for Ref. [15], this effect has not yet been
taken into account in the literature.

In this Letter we present evidence that in insulating
doped Ge the second mechanism is verified for the three-
dimensional case. We show by comparing the temperature
dependence of the DOS, derived by tunneling spectros-
copy, with that of the VRH resistivity that the observed
deviations from the ES law above 1 K correspond to the
thermal filling of the Coulomb gap and not to the tradi-
tional crossover mechanism.

The electronic DOS in solids can be directly probed by
tunneling spectroscopy and photoelectron spectroscopy,
for example [19]. But the small size of the width of the
Coulomb gap DCG strongly restricts the useful spectro-
scopic techniques. At present tunneling spectroscopy has
a better energy resolution. Massey and Lee were the first
to directly observe the Coulomb gap in a doped uncom-
pensated semiconductor Si:B [16–18] by this technique.
They used planar tunnel junctions between boron-doped
Si samples and a Pb counterelectrode with an insulating
dielectric as barrier. The superconducting quasiparticle
DOS of the lead electrode was observed, proving quantum
tunneling. Suppressing superconductivity of lead in a
magnetic field of B ! 200 mT allowed them to measure
the DOS of the Si:B electrode against the constant DOS
of normal lead. However, planar tunnel junctions are
difficult to prepare, especially with germanium.

As an alternative method, we have proposed recently
that it is possible to realize tunneling across a semicon-
ductor break junction due to the lateral confinement of
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small point contacts [20]. This is a well-established tech-
nique to investigate superconductors and metals, both in
the regime of direct metallic contact and tunneling across
a vacuum barrier [21]. However, problems may arise be-
cause the break-junction technique, with the two electrodes
consisting of the same material, does not allow a rigorous
independent test of the quality of the tunneling barrier, un-
less the material properties themselves are well known in
advance. Therefore, special care must be applied if one
wants to attribute the observed spectra to a tunneling pro-
cess which probes the excitation spectrum of the bulk ma-
terial. We adjusted our break junctions in such a way that
the bulk resistance of the material (taken in series) could be
neglected. To ensure a voltage drop confined to the junc-
tion itself, the contact resistance was set to a value larger
than about 10 kV at 1 K. Our junctions had lateral di-
mensions of less than about 100 nm. The hopping length
amounts to about 150 nm at 1 K, further increasing to-
wards lower temperatures. Charge is therefore transported
across the junction by a single hopping event at a rather
well-defined energy. This justifies our calling the trans-
port tunneling and the interpretation of the voltage drop as
an excitation energy. On the other hand, the contact di-
ameter must be large enough to inhibit the formation of a
depletion layer. Such a layer adds an additional tunneling
barrier [22], and it may also affect the local DOS in the
contact region. We estimate !10 nm as a lower bound for
the lateral size of useful junctions.

Our undoped samples were grown by the Czochralski
method using highly enriched (up to 93%) 74Ge. Neutron-
transmutation doping ensured excellent homogeneity of
75As as shallow donors [12]. The main nuclear reaction
of 74Ge with thermal neutrons is 74Ge"n, g#75Ge ! 75As.
As by-product, a small fraction of 71Ga acceptors are pro-
duced. This gives a compensation of K ! NGa$NAs !
12%, and fixes the Fermi level inside the impurity band.
The donor concentration Nd ! NAs was below, but close
to, the disorder-driven metal-insulator transition of Ge
which occurs at a critical impurity concentration of Nc !
3.4 3 1017 cm23 [23].

For our tunneling experiments the samples were cut into
1 3 1 3 10 mm3 slabs with a 0.5 mm deep groove to de-
fine the break position within the (111) cleaving plane of
germanium. The samples were glued onto a flexible bend-
ing beam, electrically insulated but thermally well coupled
to the cold plate. They were broken at low temperatures
in the ultrahigh vacuum chamber of a dilution refrigerator.
The contact size could be adjusted in situ with a microme-
ter screw and a piezotube. For further details of the
setup see Ref. [24]. The dI$dU spectra of junctions with
small resistance (less than about 100 kV) were obtained
by means of the standard four-terminal method with
current biasing. The current-voltage characteristics of
junctions with high resistance (larger than about 100 kV)
were recorded using the standard two-terminal method
with voltage biasing. In the latter case the bulk samples
contributed at most 5% to the total resistance.

All Ge break junctions investigated have rather similar
characteristics. Figure 1 shows typical spectra of a sample
with Nd ! 1.26 3 1017 cm23 as a function of voltage and
temperature. The spectra have a pronounced minimum
at low temperatures. We believe that this anomaly rep-
resents the Coulomb gap. Between 100 mK and 1 K the
spectra depend only weakly on temperature. Above about
T ! 1 K the Coulomb gap becomes filled by thermal ex-
citations. It has almost vanished at T ! 6 K.

In order to investigate how this temperature dependence
of the DOS affects the hopping resistivity, we have mea-
sured the resistance of the bulk sample using the standard
four-terminal technique. Figure 2 shows the resistance as
a function of T21$2 and T21$4, respectively. At low tem-
peratures lnR ~ T21$2, as expected for the ES law. The
resistance deviates from this behavior at T . 1 K, nearly
coinciding with the temperature at which the Coulomb
gap is suppressed according to the tunnel data; see Fig. 1.
This crossover cannot be due to the traditional mecha-
nism, because the measured width of the Coulomb gap
is DCG ! 2 meV. Estimating the crossover temperature
T! as DCG$2kB ! "TEST!#1$2 [3] leads to T! % 340 K,
which is far from the measured crossover range. Regard-
ing the temperature dependence of the resistance above the
crossover region there is no clear-cut lnR ~ T1$4 depen-
dence, but one can clearly see that the ES law no longer
applies. The temperature dependence of the resistance is
nearer to the Mott than to the ES law. Of course, a theo-
retical calculation of the temperature dependence of the
resistivity in the transition regime should take into account
the full temperature variation of the DOS as displayed in
Fig. 1. Our present aim is to demonstrate that the devia-
tion from the ES law is due to the thermal smearing of the
Coulomb gap.

We turn now to a more detailed discussion of the tem-
perature dependence of the DOS. To extract the DOS
from the spectra we first removed the energy-dependent
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FIG. 1. dI$dU vs U spectra of the Ge sample with Nd !
1.26 3 1017 cm23 at the indicated temperatures.
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FIG. 4: Unscaled gap.

|e| ≈ 0. Below we find for 2D negative deviations due to
the finite size.

HERE THE temperature dependence...

In the following we turn to the results in 2D. Again
we encounter the three bounds on ε limiting the region
of scaling. We expect the bound C1W−1/(D−1) to re-
strict us more dramatically in 2D and will see, that finite
size effects play a much stronger role. Figure 10 com-
pares 2D and 3D data for W = 2 and the three temper-
atures T ≈ 0.0103, 0.035, 0.0127. It is noticeable, that
2D has at low T stronger finite size effects than 3D. Be-
sides they have opposite sign, while gL decreases with
L in 3D and low T , it rises in 2D. Figure 11 a) shows
the analogue scaling attempt to figure 8 a) for 2D and
W = 2, L = 20, 28, 40, 56, 80. For the both largest sys-
tem sizes data are not entirely equilibrated. We exclude
all bins which still change with simulation time and ne-
glect the systematic error due to normalization, because
it is much smaller than the statistical error. As expected,
data collapses on a linear curve for Lε > C3 and we
read off C3 ≈ 2. This is larger than the value 0.03 we
have found in 3D. Therefore it will be necessary to use
larger linear sizes L in 2D than in 3D. Below C3 data
is lower than the linear fit of the scaling region. The
negative discrepancy can be attributed to the form of ψ,
analogous to 3D. In Appendix B we find for ψ in 2D
ψ(rij) = 1

|s(rij)| + 2.258|s(rij)|2/L3 + O
(

|s(rij)|4/L5
)

with |s(rij)| being the shortest image distance of the
points ri and rj . Besides we understand that no band-
structure occur in 2D, which would close the gap of for-
bidden ψ like in 3D. Therefore ψ(rij) /∈ [0, 2.2847/L]
which produces an artificial hard gap of the DOS near
ε = 0 for finite systems in 2D. The hard gap is visible in

figure 11 a). That LgL starts deviating at C3 ≈ 2 and
not at Lε = 2.2847/2 might be due to the large second
order corrections of ψ. In Fig. 11 b) we show data for
W = 4. The lower bound Lε = C3 and upper bound
C1L/W leave only a fairly small scaling region for this
W .

Figure 12 shows, how the crossover occurs in 2D. We
show gL for (W,L) = (0.5, 28), (1, 28), (2, 28), (4, 80) and
T = 0.0075. We rescale ε by W 1/effective slope to approxi-
matively superimpose the right bound. Analogue we find
for W = 0.5 an effective slope greater than D−1 whereas
gL is linear in ε for W = 2, 4. In 2D the charge ordered
phase only exists at W = 0, all finite W destroy stag-
gered order. Therefore, W = 2 is further away from the
CO phase in 2D and not effected by the crossover, while
in 3D we found still a slight modification of δ = 2 for this
value of W . For W = 4 and L = 28 the scaling region
is already too small (2 points) so that we show data for
L = 80. This data is not entirely equilibrated. The last
point decreases with simulation time but we are certain
that it will not change more than the error-bars.

Figure 13 a) shows gL(ε, T )/T versus ε/T for
W = 2, L = 80 and the low temperatures T =
0.0025, 0.005, 0.0075, 0.0105, 0.0175, 0.025. Again we
omit non-equilibrated points. Data collapses for ε/T > 4
and is well fitted by 0.4 ε/T . The line 2/πε/T using
the self consistent coefficient is added in the plot. The
quality of data collapse gives strong support for δ = 1 in
2D and W large. In figure 13 b) we show the same for
W = 4. As the scaling region is much smaller scaling is
less pronounced.

HERE: Temperature coefficient.

In Appendix A we compare ψ for different scenarios.
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

Determining the single particle DOS at finite T

1. Parallel tempering MC
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FIG. 1: Replica dynamics for Dim2 L28 W8. For bigger L we
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FIG. 2: Equilibration of the DOS for 3D, W = 2, L = 10, T =
0.0077. The thermal averages over the simulation intervals
[ts/9, ts/3] and [ts/3, ts] agree within the statistical errors.

We simulated the Coulomb glass for different sets of
parameters (Dimension, L,W, T ). The used parameters
determining exchange MC are listed in table I. Depend-
ing on (D,L,W ), we were able to equilibrate the system
down to the temperature Tmin, also shown in the table
(MARTIN: Till now is given the smallest used tempera-
ture).

By electron hole symmetry we know εF = 0 for the
system in the thermodynamical limit. However, for finite
L is the histogram of {ϕi}N

i=1 for a sample not symmetric
around zero. This leads to sample-to-sample fluctuations
of εF of the order W/LD/2. These fluctuations result
in a finite size effect of the sample averaged DOS. We
were able to reduce this effect drastically by shifting the
individual DOS before performing the sample average.

TABLE I: Simulation parameter of the exchange Monte Carlo
algorithm (MARTIN: everything in CG units).

Runtype and L Nsamples Nsweeps Ntemps Tmin

3D path W=0.2

4 1882 H6 37 0.00025

6 473 H6 37 0.00025

8 555 H6 37 0.00025

10 198 H6 37 0.00025

path W=0.5

4 9349 H6 37 0.00025

6 1569 H6 37 0.00025

8 230 H6 37 0.00025

10 236 H6 37 0.00025

path W=1

4 1373 H6 37 0.00025

6 916 H6 37 0.00025

8 248 H6 37 0.00025

10 206 H6 37 0.00025

12 80 H6 37 0.00025

path W=2

6 1888 H6 37 0.00025

8 902 H6 37 0.00025

10 576 H6 37 0.00025

path W=4

6 1800 + + H6 37 0.00025

8 575 H6 37 0.00025

10 671 H6 37 0.00025

12 170 H5 37 0.00025

D2 path W=0.5 20 467 H6 38 0.00025

28 150 H6 38 0.00025

D2 path W=1 20 586 H6 38 0.00025

28 250 H6 38 0.00025

D2 path W=2 20 875 H6 38 0.00025

28 300 H6 38 0.00025

40 125 H5 38 0.00025

56 34 H5 38 0.00025

80 86 H5 53 0.00025

D2 path W=4 20 1349 H6 38 0.00025

28 598 H6 38 0.00025

40 100 H6 38 0.00025

80 23 + ++ H5 53 0.00025

For each sample we determine the positions εa and εb

with
∫ εa

−∞ dε gL(ε, T,ϕ) =
∫ ∞

εb
dε gL(ε, T,ϕ) = 0.499 and

shift ε by (εa+εb)/2. We do not use exactly 50% because
it shifts very likely positive fluctuations to ε = 0 and
results into a slightly to large gL for the bin at zero.

3. Check relaxation to equilibrium 
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FIG. 3: We shift the median of the DOS for each sample to
ε = 0 before we perform the sample average. This reduces
the finite size effects due to the fluctuation of εF. The fig-
ure shows a comparison of data produced in this way with
simple averaged DOS for 3D, W = 2, L = 10, and various
temperatures.

III. RESULTS

Figure 4 shows the measured DOS for W = 2, L = 10
and the three temperatures T = 0.01, 0.035, 0.125. It can
be seen, how the Coulomb gap builts up with decreasing
temperature. It further shows, that we cannot expect
to measure the quadratic increase of the DOS in the full
range of ε but our analysis needs to be limited to specific
intervals of ε. First, the prediction is valid for ε in the
gap region, which restricts |ε| ! C1W−1/(D−1). Second,
when the system is helt at temperatur T > 0 than ex-
citations from the ground state up to the energy T are
thermally activated. This fills the gap around εF what
destroys the T = 0 shape and limits us to |ε| " C2T .
Third, the finiteness of the system size modifies the ex-
citon energy 1/r of Eq.(OF INTRODUCTION). The fi-
nite range of possible r produce deviations of the DOS at
small energies. This yields the lower bound |ε| " C3/L.
The precise prefactor depends, as we discussed in section
IIC and will see in the further analysis on the applied
boundary condition.

We analize the simulation data by the use of scaling.
Let us first neglect finite size effects and analyse the
L = 10 data. Like discussd above, we assume scaling
to hold for C2T ! |ε| ! C1W−1/(D−1). This suggest to
look at gL(ε, T )/T 2 versus ε/T so that the left bound is
superimposed for all T . If the prediction holds (together
with gL(ε = 0, T ) ∝ T 2), we expect scaling with f(x) ∼
constant as x → 0 and f(x) ∼ 3/πx2 as x → ∞. Figure
5 a) shows this attempt for W = 4. In the scaling region
scaling is excellent even for this moderate size, where the

deviations due to the bound C3/L are analized below.
We read off C2 ≈ 6. Below ε/T = 6 the curves bend due
to thermal activation while we can measure the T = 0
behavior above. Until the gap region is left, the data is
well fitted by g10(ε, T ) = c|ε|2 with c ( 1.1. This is close
to the self-consistent prediction c = 3/π.

Figures 5 b) and c) show the same scaling attempt for
W = 2, 0.5. With decreasing disorder we observe increas-
ing deviations from a quadratic behaviour in the scaling
region. For W = 0.5 scaling breaks down completely
and we would need an effective exponent of at least 2.8
(FOOTNOTE: The data for W = 0.5 is not entirely equi-
librated, but the slope increases with simulation time.)
to achieve data collaps. We interpret this analouge to
2D4 as a crossover due to the vicinity of the charge or-
der phase, where the DOS has a hard gap at T = 0.
This crossover is evident in figure 6. We rescale the ε-
axis by W 1/effective exponent (so that the right limit of the
scaling region fall approximatively over each other) and
exclude data, which is modified due to thermal activa-
tion. To highlight the crossover we add lines with the
slopes 2, 2.2, 2.55, 2.8.

HERE LOGderiv.

To analize the finite size effects due to the bound C3/L
we rescale the ε-axis by L and gL(ε, T ) accordingly by L2.
Fig. 8 a) shows data for W = 4 and very low tempera-
ture. For Lε > 0.3 data collapse, which gives C3 ≈ 0.3.
Fig. 8 b) shows a similar analysis for W = 1. Due
to the crossover we need to rescale gL with the effec-
tive exponent 2.6. Again we read off C3 ≈ 0.3. Below
Lε = 0.3 data deviates from the power law behavior,
more precisely gL is bigger than the power law with ex-
ponent two (effective exponent 2.6). The positive devi-
ation can be explained using our results of the function
ψ (defined in Eq.(6)) in Appendix A. To remind the
reader, ψ is the negativ energy change for an electron
hop, additional to the difference of the single particle en-
ergies of both sites. For the original model, this is the
Coulomb energy of an electron-hole pair at distance r,
while under periodic boundary conditions it becomes the
negative lattice energy of an ionic crystal. This means,
ψ replaces for the periodic lattice the simple −1/r de-
pendency of the original model. We show in Appendix
A that ψ is affected by the surroundings of the infinite
repeated lattice, which we chose to be vacuum. ψ splits
into four bands, where the zeroth band is equal 1/r cor-
rected in fourth order. The other three bands produce
states for given shortest-image-distance r smaller than
1/r. For r > 0.45L the bands have merged and ψ forms
a dense pointset of a continuum down to zero. Following
the argument of Efros and Shklovskii we know, that ψ
is the minimal energy seperation of two states with dis-
tance r. As ψ is lower than 1/r, states with given energy
seperation can be closer to each other than in the original
model. Therefore we expect gL(ε, T = 0) to be larger for

2. Shift the chemical potential to 
reduce finite-size effects

4. Use large disorder

5. Size and temperature scaling
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 0.001

 0.01

 0.1

-4 -2  0  2  4

g
L
 (
!,

T
)

!

W= 4

L =  8

T= 0.126

 0.001

 0.01

 0.1

-4 -2  0  2  4

g
L
 (
!,

T
)

!

W= 4

L =  8

T= 0.126

0.035
 0.001

 0.01

 0.1

-4 -2  0  2  4

g
L
 (
!,

T
)

!

W= 4

L =  8

T= 0.126

0.035

0.010 0.001

 0.01

 0.1

-4 -2  0  2  4

g
L
 (
!,

T
)

!

W= 4

L =  8

T= 0.126

0.035

0.010 0.001

 0.01

 0.1

-4 -2  0  2  4

g
L
 (
!,

T
)

!

W= 4

L =  8

T= 0.126

0.035

0.010

 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

0.025
 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

0.025

0.035
 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

0.025

0.035

0.047

g(ε, T ) ∼ T
δ
f(ε/T )

10
0

10
1

10
2

10
0

10
1

10
2

g
L
 (
!,

T
) 

/ 
!2

! / T

W = 4

L  = 10

T= 0.0026
0.0049
0.0077
0.0105
0.0138
0.017
0.025
0.035
0.047

3/"
Raikh

10
0

10
1

10
0

10
1

10
2

g
L
 (
!,

T
) 

/ 
!2

! / T

W = 2

L  = 10

10
0

10
1

10
2

10
0

10
1

10
2

g
L
 (
!,

T
) 

/ 
!2

! / T

W = 0.5

L  = 10

slope 0.8

FIG. 5: Temperature scaling DIM3.

10
-3

10
-2

10
-1

10
0

10
-1

10
0

g
L
 (
!,

 T
=

0
.0

1
0
5

)

! W
1/effective slope

( Only ! > 6T included. )

W = 0.5
1.0
2.0
4.0

slope = 2.80
2.55
2.20
2.00

10

10
-2

10
-1

g
L
 (
!=

0
,T

) 
/ 

T
2

T

5

W = 0.2

0.5

1

2

4

slope 1

FIG. 6: a) For W < 4 we find an effective exponent greater
than two. We interpret this as a crossover due to the vicin-
ity of the charge order phase, where the DOS has a hard
gap at T = 0. Note: The data for W = 0.5 is not en-
tirely equilibrated but the effective slope rises with simula-
tion time. b) Crossover behavior of gL(ε = 0, T )/T 2 for
W = 0.2, 0.5, 1, 2, 4.
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Results at large disorder agree with saturated ES 
bound       . Crossover to a hard gap at low disorder. δ = 2

Mogilyanskii and Raikh (1989)
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FIG. 6: a) For W < 4 we find an effective exponent greater
than two. We interpret this as a crossover due to the vicin-
ity of the charge order phase, where the DOS has a hard
gap at T = 0. Note: The data for W = 0.5 is not en-
tirely equilibrated but the effective slope rises with simula-
tion time. b) Crossover behavior of gL(ε = 0, T )/T 2 for
W = 0.2, 0.5, 1, 2, 4.
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We find that ψ for 2D and for 3D surrounded by metal are
nearly identical. In both cases ψ has |r|2/L3 corrections
with compatible prefactors 2.258, 2.094. Furthermore, ψ
consist only of one band, the band-structure of the 3D
vacuum case is absent. Figure 16 summarizes these find-
ings. Therefore we assume that the 3D metal-surrounded
lattice is similarly strong affected by finite size effects
than the 2D case. Thus, to achieve a sufficient large
scaling region it is necessary to simulate system sizes of
N = 803 for the 3D lattice with metal surroundings and
the same range of temperatures. It seems to be impossi-
ble to us to equilibrate systems of this size down to these
temperatures with present computers.
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APPENDIX A: ANALYTIC UNDERSTANDING
OF THE FUNCTION ψ

1. Multipole expansion of ψ

To understand its properties we derive an expansion
of ψ̂(ρ) ≡ Lψ(Lρ) for small |ρ|. First we restrict our
analysis to ρ ∈ I0 with

I0 ≡ {ρ #= 0 : |ρx|, |ρy|, |ρz| ≤ 0.5}, (A1)

while the general case ρ ∈ [−1 + 1/L, 1 − 1/L]3 will be
treated in the next section. For ρ ∈ I0 the function ψ̂(ρ)
represents the energy of a periodic lattice of elongated
dipoles, which is evident from the ionic crystal represen-
tation in equation 7. In the following we will perform a
multipole expansion of the dipole-dipole interaction units
of ψ̂(ρ). Starting from equation 7 we find

ψ̂(ρ) =
1

|ρ|
−

1

2

∑

µ!=0

D(ρ,µ) (A2)

where we defined the function

D(ρ,µ) ≡
2

|µ|
−

[

1

|µ + ρ|
+

1

|µ − ρ|

]

. (A3)

To expand this expression we plugg the Taylor expansion
of 1/|µ+ρ| aroung ρ = 0 into D twice. The leading term
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FIG. 6: a) For W < 4 we find an effective exponent greater
than two. We interpret this as a crossover due to the vicin-
ity of the charge order phase, where the DOS has a hard
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We find that ψ for 2D and for 3D surrounded by metal are
nearly identical. In both cases ψ has |r|2/L3 corrections
with compatible prefactors 2.258, 2.094. Furthermore, ψ
consist only of one band, the band-structure of the 3D
vacuum case is absent. Figure 16 summarizes these find-
ings. Therefore we assume that the 3D metal-surrounded
lattice is similarly strong affected by finite size effects
than the 2D case. Thus, to achieve a sufficient large
scaling region it is necessary to simulate system sizes of
N = 803 for the 3D lattice with metal surroundings and
the same range of temperatures. It seems to be impossi-
ble to us to equilibrate systems of this size down to these
temperatures with present computers.
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APPENDIX A: ANALYTIC UNDERSTANDING
OF THE FUNCTION ψ

1. Multipole expansion of ψ

To understand its properties we derive an expansion
of ψ̂(ρ) ≡ Lψ(Lρ) for small |ρ|. First we restrict our
analysis to ρ ∈ I0 with

I0 ≡ {ρ #= 0 : |ρx|, |ρy|, |ρz| ≤ 0.5}, (A1)

while the general case ρ ∈ [−1 + 1/L, 1 − 1/L]3 will be
treated in the next section. For ρ ∈ I0 the function ψ̂(ρ)
represents the energy of a periodic lattice of elongated
dipoles, which is evident from the ionic crystal represen-
tation in equation 7. In the following we will perform a
multipole expansion of the dipole-dipole interaction units
of ψ̂(ρ). Starting from equation 7 we find

ψ̂(ρ) =
1

|ρ|
−

1

2

∑

µ!=0

D(ρ,µ) (A2)

where we defined the function

D(ρ,µ) ≡
2

|µ|
−

[

1

|µ + ρ|
+

1

|µ − ρ|

]

. (A3)

To expand this expression we plugg the Taylor expansion
of 1/|µ+ρ| aroung ρ = 0 into D twice. The leading term

Results at large disorder agree with saturated ES 
bound       . Crossover to a hard gap at low disorder. δ = 2

L = 10
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.
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3. Band structure

The set of possible ρ can be divided into four regions,
which give quantitative different ψ̂(ρ). Let us define the
partition

I0 ≡
{

ρ ∈ [−1 + 1/L, 1 − 1/L]3 : |ρx|, |ρy|, |ρz| ≤ 0.5
}

I1 ≡
{

ρ ∈ [−1 + 1/L, 1 − 1/L]3 : |one component| > 0.5
}

I2 ≡
{

ρ ∈ [−1 + 1/L, 1 − 1/L]3 : |two components| > 0.5
}

I3 ≡
{

ρ ∈ [−1 + 1/L, 1 − 1/L]3 : |ρx|, |ρy|, |ρz| > 0.5
}

For ρ ∈ I0 we have |ρ| = |s(ρ)| and the second term
in (A28) cancels, so that ψ̂(ρ) = 1/|ρ| + O(|ρ|4). This
cancellation is remarkable and gives the result of the non-
periodic lattice correct to fourth order. As discussed in
section IIC, in general it is possible to surround the
sphere of Eq.(2) for Γ < ∞ by a layer of radius Γ′ of
a continuous dielectric medium with relative dielectric
constant εr. This results6 (in the limits Γ′/Γ → ∞ and
Γ → ∞) in the more general expression

ψ̂εr(ρ) =
1

|s(ρ)|
−

2π

3

(

3

2εr + 1
|ρ|2 − |s(ρ)|2

)

+
∞
∑

p=2

λ2p

(

s(ρ)

|s(ρ)|

)

·|s(ρ)|2p

(A29)
which recovers equation A28 for vacuum (εr = 1). This
expression shows that the cancellation of the second or-
der term only arises for vacuum while for εr '= 1 we al-
ways have ψ̂εr #=1(ρ) = 1/|s(ρ)| + O(|s(ρ)|2). For metal
surrounding we have 3

2εr+1 = 0 and there are stronger
positive corrections to the 1/|s(ρ)| behavior, which lead
to the interval of forbidden values ψ̂∞ /∈ [0, 2.04] as de-
scribed in the main text (see figure 16).

For εr < ∞, Eq.(A29) depends through |ρ| on the real
distance of two sites and not only on the shortest image
distance |s(ρ)|. The Inset of figure 20 shows |ρ|2−|s(ρ)|2
versus |s(ρ)| for L = 4, 6, 8, 10. For |s(ρ)| < 0.5 we
obtain four bands, which correspond to the four sets
I0...I3. In the thermodynamic limit, the shaded regions
are densely filled while the blanc regions keep void. Sim-
ple algebra gives that the band with index b is limited by
the functions

from below : b
(

1 − 2|s(ρ)|/
√

b
)

, b = 1, 2, 3

from above : b (1 − 2/L) , b = 1, 2

3 − 4/L − 2
√

|s(ρ)|2 − 2/L2 , b = 3
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FIG. 20: The function ψ̂(ρ) for a vacuum surrounded peri-
odic lattice in 3D. Beside the zeroth band, which is shown
in Figure 16, three other bands occur, which correspond to
ρ ∈ I1, I2, I3. At |s(ρ)| ≈ 0.45 the zeroth band merge with
the other bands. Therefore ψ̂(ρ) can take all values down to
zero for L → ∞. (Inset) The band structure arises through
the term ∝ |ρ|2 of equation A28, which is (up to the factor)
shown in the inset.

for |s(ρ)| < 0.5 and that the two bands 0,1 ((1,2), (2,3))

merge at |s| = 0.5 (
√

2(1/4 +
1

2L
),
√

3(1/6 +
4

6L
)). This

means, for |s(ρ)| > 0.5 all four bands have merged and
there is a region of continuous states beginning at ρ2 −
s2 = 0.

Figure 20 shows ψ̂(ρ) for L = 4, 6, 8, 10 together with
the band structure occuring in the thermodynamic limit.
The point, where the zeroth and the first band merge
shifts due to the higher order terms to |s(ρ)| ≈ 0.45. For
|s(ρ)| > 0.45 ψ̂(ρ) takes values from 1/|s(ρ)| down to
zero. Hence, for vacuum there is no forbidden interval of
ψ, while it exists for the other boundary conditions (free,
toroidal, periodic with metal layer).
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1/|µ| and all odd terms drop out and we are left with

−2D =
1

2!

∑

σ1,σ2∈{x,y,z}

ρiρj
∂2

∂µσ1
∂µσ2

1

|µ|
+

1

4!

∑

σ1,σ2,σ3,σ4∈{x,y,z}

ρiρjρkρl
∂4

∂µσ1
∂µσ2

∂µσ3
∂µσ4

1

|µ|
+ ...(A4)

=
1

2!

(

3
(µ · ρ)2

|µ|5
−

ρ2

|µ|3

)

+
1

4!

(

105
(µ · ρ)4

|µ|9
− 90

ρ2(µ · ρ)2

|µ|7
+ 9

(ρ2)2

|µ|5

)

+ ... (A5)

We plug Eq. (A5) into Eq. (A2) and perform the lattice
summation term by term. The sum over the first term,
which represents the dipole-dipole interaction of point
dipoles, vanishes in 3D, as

∑

µ"=0

(

3
(µ · ρ)2

|µ|5
−

ρ2

|µ|3

)

= lim
Γ→∞

Γ
∑

|µ|"=0

(

3
(µ · ρ)2

|µ|5
−

ρ2

|µ|3

)

(A6)

= lim
Γ→∞

Γ
∑

|µ|"=0

(

3
ρ2

xµ2
x + ρ2

yµ2
y + ρ2

zµ
2
z

|µ|5
−

ρ2

|µ|3

)

(A7)

= lim
Γ→∞

Γ
∑

|µ|"=0

(

ρ2µ2

|µ|5
−

ρ2

|µ|3

)

(A8)

= lim
Γ→∞

0. (A9)

First, we used that sums like
∑Γ

|µ|"=0 µxµy/|µ|5 van-
ish. Secondly, we used the fact that by symmetry
∑Γ

|µ|"=0 µ2
σ/|µ|5 is equal for σ ∈ {x, y, z}. These symme-

tries are not only present for our choice of the spherical
summation protocol (2) but also e. g. for a cubic form,
which is appropriately aligned.

Using similar symmetries we can reduce the higher or-
der terms to the numerical constants

Qa,b,c ≡
∑

µ "=0

µa
x µb

y µc
z

|µ|2(a+b+c)+1
(A10)

with a, b, c ∈ {0, 2, 4, 6, 8, ...} and a + b + c ≥ 4. The
summands of these lattice sums fall sufficiently fast with
|µ|, so that they are absolutely convergent. Hence, all
higher terms do not depend on the summation proto-
col (2). The values Qa,b,c can be calculated by standard
methods5. For the next order we get for instance (MAR-
TIN CHECK THIS AGAIN)

∑

µ"=0

(

105
(µ · ρ)4

|µ|9
− 90

ρ2(µ · ρ)2

|µ|7
+ 9

(ρ2)2

|µ|5

)

= [42(ρ2)2 − 210(ρ2
xρ2

y + ρ2
xρ2

z + ρ2
yρ2

z)]Q
4,0,0 + [−126(ρ2)2 − 126(

≡ λ4

(

ρ

|ρ|

)

|ρ|4

Obviously, the function λ4 is constant for ρ along a
straight line that goes through the origin. We per-
formed the analogue calculation until the fourteenth or-
der in |ρ| with the use of mathematical software. For
λ2p it was necessary to evaluate all constants Qa,b,c with
a + b + c = 2p.

In summary, for ρ ∈ I0 we found the multipole expan-
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We plug Eq. (A5) into Eq. (A2) and perform the lattice
summation term by term. The sum over the first term,
which represents the dipole-dipole interaction of point
dipoles, vanishes in 3D, as

∑

µ"=0

(

3
(µ · ρ)2

|µ|5
−

ρ2

|µ|3

)

= lim
Γ→∞

Γ
∑

|µ|"=0

(

3
(µ · ρ)2

|µ|5
−

ρ2

|µ|3

)

(A6)

= lim
Γ→∞

Γ
∑

|µ|"=0

(

3
ρ2

xµ2
x + ρ2

yµ2
y + ρ2

zµ
2
z

|µ|5
−

ρ2

|µ|3

)

(A7)

= lim
Γ→∞

Γ
∑

|µ|"=0

(

ρ2µ2

|µ|5
−

ρ2

|µ|3

)

(A8)

= lim
Γ→∞

0. (A9)

First, we used that sums like
∑Γ

|µ|"=0 µxµy/|µ|5 van-
ish. Secondly, we used the fact that by symmetry
∑Γ

|µ|"=0 µ2
σ/|µ|5 is equal for σ ∈ {x, y, z}. These symme-

tries are not only present for our choice of the spherical
summation protocol (2) but also e. g. for a cubic form,
which is appropriately aligned.

Using similar symmetries we can reduce the higher or-
der terms to the numerical constants

Qa,b,c ≡
∑

µ "=0

µa
x µb

y µc
z

|µ|2(a+b+c)+1
(A10)

with a, b, c ∈ {0, 2, 4, 6, 8, ...} and a + b + c ≥ 4. The
summands of these lattice sums fall sufficiently fast with
|µ|, so that they are absolutely convergent. Hence, all
higher terms do not depend on the summation proto-
col (2). The values Qa,b,c can be calculated by standard
methods5. For the next order we get for instance (MAR-
TIN CHECK THIS AGAIN)

∑

µ"=0

(

105
(µ · ρ)4

|µ|9
− 90

ρ2(µ · ρ)2

|µ|7
+ 9

(ρ2)2

|µ|5

)

= [42(ρ2)2 − 210(ρ2
xρ2

y + ρ2
xρ2

z + ρ2
yρ2

z)]Q
4,0,0 + [−126(ρ2)2 − 126(

≡ λ4

(

ρ

|ρ|

)

|ρ|4

Obviously, the function λ4 is constant for ρ along a
straight line that goes through the origin. We per-
formed the analogue calculation until the fourteenth or-
der in |ρ| with the use of mathematical software. For
λ2p it was necessary to evaluate all constants Qa,b,c with
a + b + c = 2p.

In summary, for ρ ∈ I0 we found the multipole expan-

M.Goethe and MP, unpublished

With an infinite periodic system, finite size effects are stronger in 
2D than in 3D (with vacuum surrounding media)

∆Ei→j = εj − εi − V (rij)

V (rij) ≡
1

|rij | −
∑

m
m !=0

[
1

|m| −
1

|rij + m|

]
=

1
L

Ṽ (
r
L

)
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Pseudo-ground state calculations confirm our Monte 
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

Comparison with recent numerical work

0.3

0.6

1

3

6

1

10

10
-2

10
-1

g
L
 (
!,

T
) 

/ 
!2

!

W = 4

T  = 0.0077

L= 6
  8

  10
  12

Pseudo-ground state, L= 30
Moebius. PGS, L= 200

3/"

Unpublished data courtesy of Arnulf Möbius

 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

0.025
 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

0.025

0.035
 0.001

 0.01

 0.1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

g
L
 (
!,

T
)

!

W= 4

L = 8

T= 0.010

0.017

0.025

0.035

0.047

Tuesday, August 24, 2010



 

2

a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

See also:  Comment on the paper by Surer et al. 
by Möbius and Richter Phys. Rev. Lett. 105, 039701 (2010)

Comparison with recent numerical work

Our data
Surer, Katzgraber, Zimanyi, 
Allgood, Blatter, PRL 102, 067205 
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

Hardening of the Coulomb gap due to the “polaron shift”

 Efros (1976) considers the stability of sites + soft pairs. Assuming that soft pairs 
have a finite DOS      at low energy, he obtains:     

 Baranovskii et al. (JETP, 1980) improved the argument and propose

 by considering:
   - stability with respect to simultaneous flipping of many dipoles
   - the angles in the dipolar interaction
   - the depletion of the pair DOS due to dipole-dipole interaction, 
     which gives
   

f(ω)

g(ε) ≤ g0 exp[−
(

a∆
ε

) 1
2

]

g(ε) ≤ g0 exp[−
(

a∆
ε

)
/(ln(B/ε))7/4]

f(ω) ∝ 1
ln(∆/ω)

Why do we observe            then?     g(ε) ∼ |ε|2
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑
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niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented
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sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
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i δ(E − Ei) with
Ei =
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j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

Soft sites (|energy| < 0.1) and soft dipoles (|energy| < 0.1; size <= 3) 
in a L=30 sample
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:
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(nj − ν) +
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niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6

g
L
 (
!)

  
  

a
n

d
  

  
f L

 (
!,

 R
m

a
x
=

1
)

!

Single-particle DOS

Pair DOS, Rmax=1

3./pi !
2

10
-2

10
-1

10
-2

10
-1

10
0

f L
 (
!

, 
R

m
a

x
=

1
)

!

W=2

W=4

Exchange MC;  L=10

T=0 quench;  L= 14

T=0 quench;  L= 22

T=0 quench;  L= 30

fL(ω, R) =
∑

r≤R

hL(ω, r)

hL(ω, r) =
1
N

∑

(ij),rij=r

[ 〈δ(ω − ωij)) 〉]av
ωij = εj − εi − 1/rij

L = 30

Tuesday, August 24, 2010



2

a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.

Summary

- no evidence for an equilibrium glass phase in 3D
- similar correlations in 2D and 3D
- characterization of the charge order phase transition
- saturated ES bound in 3D and 2D
- hardening of the gap only at unmeasurably small scales
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.
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a finite-temperature glass transition. Furthermore, in the RD

model the low-temperature ordering is indicative of a distorted

Wigner crystal.

Model and numerical details.— The Coulomb glass (CG)

Hamiltonian is given by [3]:

HCG =
1

2

∑

i!=j

(ni − ν)
e2

κrij
(nj − ν) +

∑

i

niεi, (1)

where ni ∈ {0, 1} is the electron number at site i, ν the fill-
ing factor, and e2/κrij the Coulomb repulsion. The sites lie

on a three-dimensional lattice of size N = L3, and the elec-

tron number is coupled to Gaussian-distributed random site

energies εi with zero mean and standard deviation W , i.e.,

P(εi) = (2πW 2)−1/2 exp(−ε2
i /2W 2). In the RD model,

instead of random site energies, the disorder is represented

by Gaussian-distributed random displacements of the lattice

sites with standard deviation
√

3W . The DOS is given by

the disorder average of ρ(E) = (1/N)
∑

i δ(E − Ei) with
Ei =

∑

j !=i(nj − ν)(e2/κrij) + εi the local single-particle

energy [3].

For the simulations we use particle-conserving dynamics

and periodic boundary conditions. To cope with the long-

range Coulomb interactions we perform a resummation tech-

nique in which we sum all interactions over periodic im-

ages and renormalize the energy scales such that the nearest-

neighbor distance is a = 1. To compute the ground-state
DOS (T = 0) we use extremal optimization [42]. For the
CG model we perform 219N updates and study systems of up

toN = 143 sites in 3D forW = 0.2 and 0.4 and average over
3000 disorder samples forL ≤ 12 and 1800 (800) samples for
L = 14 forW = 0.2 (W = 0.4). For the RD model we study
N = 143 sites and average over 100 disorder samples (fluc-
tuations are small). For the study at finite temperatures we

use exchange Monte Carlo [43, 44]. Equilibration is tested

by a logarithmic data binning. Once the last three bins agree

within errors, the system is in thermal equilibrium. Simula-

tion parameters can be found in Table I.

Results for the density of states.— Figure 1 (top and cen-

ter panels) show the DOS at T = 0 for the 3D CG model

for two disorder strengths close to the Fermi level (E = 0)
at half filling (ν = 1/2); the insets show the whole func-

tional shape. The data can be fit very well with a form∼ |E|δ
with δ = 2.01(2) (L = 14) for W = 0.2 and δ = 1.83(3)
(L = 14) for W = 0.4 (restricted to |E| ≤ 0.3), which is
close to the ES value of δ ≈ D − 1.
Fig. 1 (bottom) shows the DOS of the RD model for L =

14. The DOS shows a pronounced double-peak, the width of
the peaks dependent onW . There is no sign of the character-

istic Coulomb gap shape, moreover the peaks at |E| ∼ 1 are
typical of a Wigner crystal (WC). Thus the DOS of the RD

model is indicative of the formation of a moderately-distorted

WC at T = 0.
Results at finite temperature.— At half filling (ν = 1/2)

the ground state of the clean system (W = 0) is a WC with
a bipartite charge pattern. For a WC the DOS is expected to

FIG. 1: (Color online) Top: DOS for the 3D CG model for W =
0.20. The data are well fit by ρ(E) ∼ Eδ , δ ≈ 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the

top panel forW = 0.40. The insets show the full DOS. Both panels
have the same horizontal range. Bottom: DOS for the 3D RD model.

For all W studied the data show a bimodal structure with peaks at

|E| ∼ 1 and a hard gap of size ∼ 2, in stark contrast to the CG
model.
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Results in two dimensions agree with         
with crossover to larger    at small disorder

δ = 1
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Crossover in 2D already observed by Pikus and Efros (1994)
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Phase transition fluid / charge-ordered phase 

ν from mod. hyperscaling ν =
2− α

d + γ/ν − γ̄/ν

A. Middleton & D.S.Fisher, PRB 2002

breaks down above the COP, and an effective power law
gLð!; T ¼ 0Þ /j !j" holds with " * 3, in contrast with
Ref. [7]. A more extended account will appear later [24].

Model and simulation.—We study the Hamiltonian

H ¼ e2

2#

X

i!j

ðni $ KÞ 1

jrijj
ðnj $ KÞ þW

X

i

ni’i; (1)

where ni 2 f0; 1g are the occupation numbers for the N ¼
Ld sites of a hypercubic lattice (d ¼ 3) with

PN
i¼1 ni ¼ KN

and rij is the distance from i to j. The filling factor is K ¼
1=2 (which gives $ ¼ 0). The random on-site energies ’i

are independent and Gaussian-distributed with zero mean
and variance unity. Energies and temperatures will be in
units of e2=ð#‘Þ and lengths in units of the lattice spac-
ing ‘.

We carry out canonical MC sampling along the paths
ABC and ADE in Fig. 1 and at constant W ¼
0:2; 0:5; 1; 2; 4. We consider an infinite sphere of periodic
images of a central L3 cell and sum over all interactions
with the Ewald method with a dipole surface term [25]. To
reach low temperatures, we use the exchange MC algo-
rithm [26]. For each realization (sample) ’ ¼ f’igNi¼1, we
simulate identical replicas with different ðT;WÞ along the
simulation path. Every N=2 Metropolis steps for single-
electron hops, replicas at adjacent ðT;WÞ and ðT0; W 0Þ swap
their configurations with probability minð1; pÞ, where p¼
exp½ð%$%0ÞðH $H 0ÞþðW 0$WÞð%R0$%0RÞ', % ¼
1=T, and R ¼ P

ini’i, which preserves detailed balance.
The simulation time ts is chosen so that averages over the
intervals ½ts=3; ts' and ½ts=9; ts=3' agree within the statis-

tical errors and that the identity 2TN$1½hRi'av ¼
Wð2N$1 PN

i¼1½hnðaÞi nðbÞi i'av $ 1Þ, valid for Gaussian disor-
der, is satisfied. Here h(i and ½('av are the thermal and
sample averages, respectively, and a and b are two inde-
pendently simulated replicas with the same ð’; T;WÞ [27].

Charge ordering.—Figure 2 (top inset) shows the
COP order parameter Ms ¼ ½hjmsji'av along the paths
AB, BC, and DE, where ms ¼ N$1 PN

i¼1 &i and &i ¼
Sið$1Þxiþyiþzi (we introduce the Ising variables Si ¼
2ni $ 1). The sharp increase demonstrates a transition to
a COP. To determine the transition temperature Tc, we
measure the finite-size correlation length (CL) [28]

'L ¼ 1

2 sinðjkminj=2Þ

!
(Lð0Þ

(LðkminÞ
$ 1

"
1=2

; (2)

where (LðkÞ ¼ N$1P
i;j½h&i&ji'aveik(rij and kmin ¼

ð2)=L; 0; 0Þ. Along BC, the data for 'LðTÞ=L for different
L cross (Fig. 2, main panel), which signals [29] a transition
at TBC

c ¼ 0:0950ð15Þ. We observe similar crossings along
AB and DE (not shown) at TAB

c ¼ 0:1280ð15Þ, in excellent
agreement with Refs. [6,21], and TDE

c ¼ 0:031ð2Þ. The
curve ½TcðWÞ=TAB

c '1:60 ¼ 1$ ðW=0:15Þ1:60 interpolates
these three points and gives the approximate fluid-COP
phase boundary in Fig. 1.

Critical behavior.—Since at W ¼ 0 the fluid-COP tran-
sition has a positive specific-heat exponent [21], disorder is

relevant and the W ! 0 transition will be governed by a
random fixed point which, by analogy with the RFIM [21],
we expect to be at T ¼ 0 [30]. Assuming that the W ! 0
transition is second order (indeed, the distribution of ms is
unimodal at all T for a predominant, and increasing with L,
fraction of the samples [24]), we obtain the critical expo-
nents in Table I. %=* and !+=* were estimated with the
quotient method [32] for the observables Ms and !(L ¼
N½hm2

si'av, respectively [the quotient estimates from
ðL; L0Þ ¼ ð6; 8Þ; ð6; 10Þ, and (8, 10) agree within the errors],
while +=* was obtained by fitting aL+=* to the height of
the peak of the susceptibility N½hms

2i$ hjmsji2'av (data
not shown). The peak height for the specific heat cL ¼
1=ðNT2Þ½hH 2i$hH i2'av increases slowly with L (Fig. 2,
bottom inset), which suggests either,< 0 or a logarithmic
divergence (, ¼ 0). We could not directly estimate * in a
reliable way, but we obtain * ¼ 1:11ð12Þ from the modi-
fied hyperscaling relation [30] ðd$ -Þ* ¼ 2$ ,, assum-
ing , ¼ 0 and using - ¼ !+=*$ +=* ¼ 1:20ð20Þ. As
shown in Table I, the exponents agree fairly well with the
known values for the RFIM [31], which suggests that the
interaction is effectively short-range near the phase
boundary.
Glass phase.—Several works have searched for a GP by

measuring the parameter ½ðhnii$ 1=2Þ2'av [11] or higher
cumulants of the overlap between two replicas [15]. We
measure instead the glass CL 'G

L obtained from Eq. (2) by
replacing ½h&i&ji'av with the ‘‘spin-glass’’ correlation
function GðrijÞ ¼ ½ðhSiSji$h SiihSjiÞ2'av. In the fluid
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FIG. 2 (color online). Charge-order CL along path BC in
Fig. 1. Top inset: Order parameter Ms along paths AB, BC,
and DE. Bottom inset: Specific heat along path BC.

TABLE I. Critical exponents for the fluid-COP transition
along BC in Fig. 1, compared with the RFIM values [31].

+=* !+=* %=* *

Coulomb glass 1:69ð17Þ 2:89ð9Þ 0:06ð4Þ 1:11ð12Þ
RFIM 1:44ð12Þ 2:93ð11Þ 0:011ð4Þ 1:37ð9Þ
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β/ν, γ̄/ν from quotient method for Ms, χ̄L = N [〈ms

2〉]av

γ/ν from divergence of χ|ms| = N [〈m2
s〉 − 〈|ms|〉2]av

assuming α = 0

Transition in RFIM universailty class 

-> Interaction is effectively short-range
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