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A common type of experiment in glasses:
Excite the system and measure the relaxation by 
measuring the time dependence of some suitable 
response function.

In electron glasses
Excitation done by change of gate voltage, by application of high 
electric field, by electromagnetic radiation (infra red).

The response function used is conductance – it responds to excitat
the conductance is higher in an excited state.

Results (groups of Ovadyahu, Grenet, Frydman and others):
The relaxation from an excited state is extremely slow, 
logarithmic in 
time, typically with a decay of several percent per decade of time. 
(A good measure of decay rate is τ - time of decay to half 
amplitude). The  log t dependence is observed from ~ 1sec for 
durations of a day or so. THE GLASS IS NON-ERGODIC.



The ergodic condition
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In theory τ →∞, 
More practical is to make τ > a very long experimental 
time

D – Any dynamical variable (or operator)
ξ - microscopic state (point in phase Hilbert space).
p(ξ) –

space or state in 
Ensemble probability that system is in state ξ

A necessary condition for ergodicity: rapid transitions between 
states, so the system can visit all relevant states during 
experimental time (e.g. all states at a fixed energy for an 
isolated system).



ergodic non-ergodic – no decay to 
equilibrium



Violation of time homogeneity. 
Results of a measurement depend only on (t-t0) where t0 is the 
time the experiment started.

The response of the system depends on its internal state which in 
the glass changes extremely slowly. So measurement at t 
depends also on the state of the system at time to.

Most solids in nature are non-ergodic.



A PIECE OF NATURE



How can the very light electrons form a non-ergodic
glass?
1. Disorder - Anderson localization.

the motion of the electrons is reduced to 
hopping.

2. Further slowing of motion - Coulomb interactions.

The DOS near the Fermi level is dramatically reduced (Coulomb 
gap). 

Single particle transport suppressed.

Many-particle transitions not inhibited by Coulomb gap but 
much

slowed down by collective motion.  
Calculation of such rates shows that they can be ~years --1
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Quantum effects ought to be important (in distinction to many 
other glasses)



Nevertheless, there exist infidels who still don’t 
believe in the existence of intrinsic electron 
glasses but think of extrinsic effects to account 
for the glassy behavior, i.e that the observed 
glassy effects are due to some other entity (e.g. 
ions) that couple to the electrons.

There is good evidence that at least a number of 
electron glasses are intrinsic – certain glassy 
properties depend entirely on the electron 
concentration n (e.g, the relaxation rate). 



THE “STANDARD” MODEL HAMILTONIAN
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energy of an electron on site i:

Ei= εi + Σj (e2/κrij)(nj-K)

K is often taken to be ½.

THE MAXIMUM OCCUPATION OF A SITE IS ONE ELECTRON
(due to large inter-site Coulomb interaction)

ALL LOCALIZED STATES ARE IDENTICAL.

NOTICE THAT THE MODEL HAMILTONIAN IS
CLASSICAL



TRANSITION RATES BETWEEN SITES

TRANSITION RATES BETWEEN CONFIGURATIONS
wIJ = w0 g n-1exp(-Em/kT) exp(-
Σshortest2r /ξ)

g - a factor that depends on the strength of interaction
n - the number of electrons changing position 
Em - max(Ei, Ej )

wij = w0 exp(-Eij/kT) exp(-
2rij /ξ)rij – distance between sites i, j ;  Eij = 0 for downward hop; >0 for 

upward  hop

Quantum mechanics enters in the lowest order – the golden rule 



Changing gate voltage excites the electronic system in 2 ways:
1. By introducing extra electrons (or holes) at higher than thermal energies,
2.  By changing the random site potentials of the localized states.

Two crucial ingredients: Interaction and disorder
Interaction causes formation of quasi-particles that reduce the energy of the system.
Disorder causes their formation to be slow – formation is by (possibly collective) hopping

Decay of conduction is due to increase in correlations as quasiparticles form.
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M. Pollak and Z. Ovadyahu, Phys. Status Solidi C 2003

A QUASI-PARTICLE MODEL

Let’s think for example of excitation by gate voltage
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From ~equilibrium at V0, a switch from V0 to V1 makes state A into an excited state

SKETCH OF RESPONSE TO GATE VOLTAGE CHANGE
A QUASI-PARTICLE MODEL

Staying some time at V1 relaxes (by partial quasiparticle formation) A into C

change of εi changes the Hamiltonian and so changes state energies )   



RELAXATION

The transition rates w are exponential functions of a random variable x=ar+bε

The distribution N(w) of the rates w is related to the distribution N(x)  by
w = w0⋅exp[-x],   x=-ln(w/wo)

N(w)dw=N(x)dx,
N(w) = N(x) • dx(w)/dw = (w0/w) • N[-ln(w/w0)]

The argument of N changes little for a large change of w. 
The important feature of N(w) is the existence of a minimal value of w, say wm.

ΔE(t), the energy reduction due to partial quasi-particle formation at t, is then

As long as wmt<<1 the dominant t-dependent term is the logarithm. Then

ΔE(t) ∝ - ln (wmt).
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A QUASI-PARTICLE MODEL



The relaxation in energy must be related to the 
relaxation of the excess conductance ΔG(t) 
measured experimentally.

ΔG(t) decreases as the system relaxes
so ΔG is a monotonic function of ΔE.

We use an expansion ΔG = α + βΔE + …. 
The constant term has no effect on the excess
conductance. 
The result of the expansion is

ΔG(t) ∝ - ln (wmt ) ≡ -K ln (wmt )



Relaxation with N(w)=const./w

A QUASI-PARTICLE MODEL

With every decaying curve, the energy relaxes on the average by some amount δ. 
N(w)~1/w corresponds here to a uniform distribution. Thus the relaxation

during an interval Δlnt is proportional to Δlnt



A.Amir, Y. Oreg and Y. Imty, PRB 77, 165207 (2008)
PRL  103, 126403 (2009)
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Boltzmann equation

For δfk << fk equil ≡ fk
0 for all k,

one can write dδf/dt=A⋅δf,      δf+= [δf1, δf2 δf3…. δfN ],  N is the number of sites

Akk=-∑l≠k γkl
0/fk

0(1-fk
0),     Akl = γkl

0/fk
0(1-fk

0) - ∑i≠k,le2(rkl
-1-rli

-1)/T

A bit of physics: γkl
0 is the net transition rate from k to l near equilibrium ;  

fl
0(1-fl

0) is appreciable only for l within a few kT of EF.

transition rate i→j (if i is occupied and j empty)

What are the eigenvalues λ of A and what is their distribution?

Numerical evaluation shows a distribution P(λ) ∼ 1/λ

The implication is a logarithmic time dependence of the relaxation

Time Dependence of Relaxation

probability(i occupied, j empty)

MEAN FIELD MODEL



INTERACTING DIPOLE MODEL
A.L.Efros, this program (work in progress)

Within C: Dominant energy is interaction energy, some sites occupied, some 
empty

Outside C: Dominant energy is random energy,

Spatially close-by pairs are singly occupied and form dipoles.

Pairs of sites  
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One-Particle Density of States (DOS)



INTERACTING DIPOLE MODEL
Dipole excitations

Two close-by sites are likely to be singly occupied 
because of the repulsion over close distances.

If their interaction energies with the electrons on the 
other sites is similar (likely if their separation is 
smaller than the average separation, rik < <rnn>) and 
their random energies are similar,  or,  more 
generally if

∑j≠I,k ni nj /rij +εi - ∑j≠I,k ni nj/rij -εk ~ 
kTthe electron can hop easily between i and k.

i k



Interaction between such dipoles forms clusters which hop 
collectively.

Relaxation of clusters has exponentially wide rates, so constitues
a glass. 

Relaxation of the clusters deepens the Coulomb gap and thus 
reduces the conductance.

Conduction takes place near the Fermi level, i.e. by electrons in 
the Coulomb gap, so the “glassy sites” are separated from the 
sites which the current flows.

INTERACTING DIPOLE MODEL
Dipole glass



RELAXATION EXPERIMENT
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THIS TYPE OF T DEPENDENCE STRONGLY SUGGESTS  THAT

QUANTUM EFFECTS ARE IMPORTANT

OVADYAHU PROPOSED THAT QUANTUM DISSPATION IS AT WORK

RELAXATION (T )



Some questions:

All the materials which show non-ergodic electron glassiness have 
many 
electrons per localized state and the localized states are not uniform. 
How well can the “standard” model represent such systems? 

How important in relaxation are quantum effects (e.g. quantum 
dissipation?)

Changes in conductance and in rate of relaxation seem to be little 
correlated,  (e.g. change of G with change of T vs. change of τ with 
change of T, or
change of G with magnetic field vs. change of τ with magn. field)


