destruction of superconductivity by disorder

B.Spivak
University of Washington
with P. Oreto and S. Kivelson
Stanford University

examples of disordered (T<<T_c°) superconductor-metal transitions:

S-wave superconductor-normal metal transition in the presence of magnetic field

superconducting droplets embedded into Normal metal with electron repulsion

D- and P- wave superconductors in the presence of disorder

$$\Delta(\vec{r}, \vec{r}') = \int \Delta(\vec{k}) e^{i\vec{k}(\vec{r} - \vec{r}')} d\vec{k}$$

in S-wave superconductors

elastic electron scattering destroys D- and P-wave superconductivity when the electron mean free path I
$$\sim \xi$$

becomes of order of the superconducting coherence length.

in D- and P-wave superconductors $\Delta(\vec{r} = \vec{r}') = 0$

 $\Delta(\vec{r} = \vec{r}') = \Delta(\vec{r})$

an assumption: e-e interaction in D (or P)-channel is attractive, while in S-channel it is repulsive

T=0 superconductor-metal transition in a perpendicular magnetic field

N. Masson, A. Kapitulnik

There are conductors whose T=0 conductance is four order of magnitude larger than the Drude value.

superconductor – glass transition in a magnetic field parallel to the film

FIG. 2. R versus time after H_{\parallel} was held constant when R_0/R_N reached desired values during field-up sweeps. Arrows indicate some of the avalanches. Note that the $R_0/R_N=5\%$ curve actually jumped above the $R_0/R_N=20\%$ curve.

W. Wu, P. Adams,

The mean field theory:
The phase transition is of first order.

There are long time (hours) relaxation processes reflected in the time dependence of the resistance.

superconducting Sr₂RuO₄ is a strong suspects for P-wave superconductivity

A. P. Mackenzie at all

D-wave order parameter in pure superconductors

schematic picture of the order parameter in D-wave superconductors

"corner SQUID" experiment which demonstrate d-wave symmetry of the order parameter in HTC

at sufficiently strong disorder all "unconventional" superconductors with even in **k** order parameter (for example D-wave) have S-wave symmetry

at sufficiently strong disorder all "unconventional" superconductors with odd in **k** order parameter (for example P-wave) either have the same Symmetry as in pure case, or they are glasses

"Conventional" phase diagram of disordered D-wave superconductors

The phase diagram of disordered D-wave superconductors

near the point of the transition the order parameter has global S-wave symmetry

The phase diagram of disordered P-wave superconductors

near the point of the transition the order parameter has either global P-wave, or "glass symmetry"

d-wave superconducting puddle embedded into disordered normal metal.

outside the puddle s-wave component of the order

outside the puddle s-wave component of the order parameter is generated. Only this component survives on distances larger than elastic mean free path I

in diffusive metal s-component of the anomalous Green function $F_s(r)=F(r,r)$ is described by the Usadel equation

$$D_{tr} \frac{d^2 \theta(\varepsilon, \vec{r})}{d^2 \vec{r}} + i\varepsilon \sin \theta(\varepsilon, \vec{r}) = 0; \quad F_s(\vec{r}, \varepsilon) = -i\sin \theta(\varepsilon, \vec{r})$$
$$F_s(\vec{r}) = \int F_s(\vec{r}, \varepsilon) d\varepsilon$$

 D_{tr} is the electron diffusion coefficient in the normal metal

$$F_s(r) \propto \frac{1}{r^3}$$
 $D = 3;$ $F_s(r) \propto \frac{1}{r^2 \ln^2 r}$ $D = 2$

before averaging over realizations of disordered potential the order parameter $\Delta(r,r')$ (and the anomalous Green function F(r,r')) do not have any symmetry.

Possible definitions of the global S-wave symmetry in bulk samples :

1. corner SQUID experiment shows global s-wave

- symmetry of the order parameter

 2. the quantity $\langle F_s(r) \rangle = \langle F(r=r') \rangle$ is nonzero. (The
 - brackets stand for averaging over realizations of random potential.)
 - 3. the system has s-wave global symmetry if $P_+ P_- > (<)0$. P_+ and P_- are volume fractions where $F(r=r')=F_s(r)$ has positive or negative sign, respectively.

if puddle concentration is big the order parameter has global d-wave symmetry, while the s-component has random sample specific sign

Effective mean field energy

$$E = -\sum_{ij} j_{ij}^{(d)} e^{i(\varphi_i - \varphi_j)} + c.c.$$

J_{ij}^(d) >0 is the Joshepson coupling energy between D-wave components

if the concentration of superconducting puddles is small the order parameter has s-wave global symmetry, while the d-wave component has random sample specific sign

effective energy of the system is equivalent to Mattic model in the spin glass theory:

$$\eta = sign(\oint_{S} \Delta_{s}(\vec{r}) d\vec{r})$$

$$E = -\sum_{ij} j_{ij}^{(s)} \eta_j \eta_i e^{i(\varphi_i - \varphi_j)} + c.c.;$$

$$\eta_i = \pm 1 \text{ are random in signs, } j_{ij}^{(s)} > 0$$

in the ground state $e^{-i\varphi_i} = \eta_i$

$$e^{i\Phi} = \eta_i e^{i\varphi}$$

$$e^{i\Phi} = \eta_i e^{i\varphi}$$

$$E = -\sum_{ij} j_{ij}^{(s)} e^{i(\Phi_i - \Phi_j)} + c.c.;$$

more realistic picture superconducting puddles embedded into a metal

effective energy of the system is equivalent to Mattic model in the spin glasses theory:

$$E = -\sum_{ij} j_{ij}^{(s)} \eta_j \eta_i e^{i(\varphi_i - \varphi_j)} + c.c.; \quad \eta_i = \pm 1,$$

J_{ij} is the Joshepson coupling energy between S-wave components

an effective energy at intermediate concentration of superconducting puddles

$$E = -\sum_{ij} \left[j_{ij}^{(s)} \eta_j \eta_i + j_{ij}^{(d)} \right] e^{i(\varphi_i - \varphi_j)} + c.c.$$

$$\eta_i = \pm 1, \quad j_{ij}^{(s)}, \quad j_{ij}^{(d)} > 0$$

is there a superconducting glass phase when $J^{(s)} \sim J^{(d)}$?

The generic phase diagram of disordered D-wave superconductors

near the point of the transition to normal metal the order parameter has global S-wave symmetry

in the case of disordered p-wave superconducting puddles, spin-orbit interaction generate the S-component of the order parameter in disordered metal. However

$$\oint_{S} \Delta_{s}(\vec{r}) dr = 0$$

and it's angular dependence has a dipolar character.

An example: p+ip symmetry of the order paramete the case where nodes are pinned in in a particular direction

the global symmetry of the order parameter is the same as in pure case. Thus, at T=0 there is a direct quantum phase transition from P-wave superconductor to the normal metal

phase diagram of disordered P-wave superconnductor

near the point of the transition the order parameter has global P-wave symmetry

In the case where anisotropy axis has random directions, near metallic phase the system is a superconducting glass

near the point of disordered quantum phase transition the system can be visualized as superconducting puddles connected by Joshepson couplings.

a generic feature of the disordered quantum transitions is that the characteristic interpuddle distance is much bigger than their characteristic size.

a criterion of a phase transition:

$$X_{ij} = \chi_i \chi_j J_{ij} J_{ji} \approx 1$$

 χ_i is the susceptibility of a puddle J_{ii} is the Joshepson coupling between puddles

 χ_{ι} and J_{ii} are random quantities

At T=0 Joshepson coupling between the puddles decay with the inter-puddle distance slowly.

$$J_{ij} \propto rac{1}{r_{ij}^x}$$

the case of disordered S-wave superconductors in the presence of magnetic field

$$\langle J \rangle \propto \exp \frac{r}{L_{\mu}}; \quad \langle J^2 \rangle \propto \frac{1}{r^4} \quad D = 2$$

the case of S-wave superconducting droplets embedded in disordered metal

$$\langle J \rangle \propto \frac{1}{r^2} \quad D = 2$$

the case of S-wave superconducting droplets embedded in disordered metal in the presence of parallel magnetic field

$$< J(r) > \infty \exp(-\frac{r}{L_I})\cos\frac{r}{L_I}, \quad L_I = (D/\mu H)^{1/2}$$

Bulaevski, Buzdin

R~Rc

$$\chi = e^{G_{\it fff}}$$
 $3D$ Kosterliz $\chi = e^{\sqrt{G_{2D}}}$ $2D,$ Fegelman, Larkin, Skvortsov

 G_{eff} and G_{2D} are conductances of a cube of normal metal of size R, and 2D normal film respectively

susceptibility is an exponential function of G >>1

Rc>>R-Rc >0

$$\chi_i \propto \Delta_0 \exp\left(\Gamma_i \frac{(R_i - R_c)}{R_c}\right); \quad \Gamma_i \approx V_i \nu \Delta_0$$

properties of the exotic metal near the quantum superconductor-metal transition:

conductivity of the "metal" is enhanced

Hall coefficient is suppressed

magnetic susceptibility is enhanced

in which sense such a metal is Fermi liquid? For example, what is the size of quasi-particles? Is electron focusing at work in such metals?

Quantum disordered superconductornormal metal transitions have unusual properties. Near the point of the transition

the distance between the optimal puddles

is much larger than their size

Conclusion: