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Contact line wetting
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• isobutanol on a randomly 
silanized silicon wafer

• hydrogen on disordered 
Cesium substrate
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out of 
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The model 

formulas
u−w = w
F(w)F(0) u
ˆ
|w|

h(x) = u(x)−w

Z(λ ) :=
∫ ∞

0
dS p(S)

[
eλS−1

]

5

Model and Observables

x

Displacement field x ∈ R −→ u(x) ∈ R

Elastic energy: Hel =
1
2

∫ ddk
2π

|ũk|2 εk +
∫

x

m2

2
[u(x)−w]2

for contact angle θ = 90◦: εk ≈
√

k2 +κ2−κ
κ−1 = m−2 kapillary length (instead of εk = k2)

Disorder energy HDO =
∫

ddxV (x,u(x))

with correlations V (x,u)V (x′,u′) = δ d(x− x′)R(u−u′)
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Simple theory for zero temperature T = 0
Suppose R(u) is analytic. Then to all orders in perturbation theory:

〈
[u(x)−u(0)]2

〉
∼−R′′(0)x4−d +O(T )

shift in dimension by two from thermal 2-point function〈
[u(x)−u(0)]2

〉
= T x2−d: dimensional reduction.

Experimentally wrong beyond Larkin length:

L

elastic energy Eel = cLd−2

disorder EDO = f̄
(L

r

)d/2

Eel = EDO ⇒ Lc =
(

c2

f̄ 2rd
) 1

4−d

critical dimension is dc = 4
u dimensionless in dc = 4 ⇒ all powers of u relevant!

Need functional RG!
Old idea: Wegner, Houghton (1973)
for disordered systems: D.S. Fisher (1985)

5



Functional renormalization group (FRG)Functional renormalization group (FRG)
(D. Fisher 1986)

H [u]
T

=
1

2T

n

∑
α=1

[∫

k
εk|ũα

k |2 +
∫

x
m2(uα(x)−w)2

]

− 1
2T 2

∫

x

n

∑
α,β=1

R
(
uα(x)−uβ(x)

)

Functional renormalization group equation (FRG) for the disorder
correlator R(u) at 1-loop order:

−md
dm

R(u) = (ε −4ζ )R(u)+ζ uR′(u)+
1
2

R′′(u)2−R′′(u)R′′(0)

Solution for force-force correlator −R′′(u):

renormalization

uu

!R’’(u) !R’’(u)

Cusp: R′′′′(0) = ∞ appears after finite RG-time (at Larkin-length)
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FRG at 2-loop order

∂!R(u)= (ε−4ζ )R(u)+ζ uR′(u)+
1
2

R′′(u)2−R′′(u)R′′(0)

+
1
2

[R′′(u)−R′′(0)]R′′′(u)2 +λ 1
2

R′′′(0+)2R′′(u)

λ =−1 statics, λ = 1 (depinning)

Universality classes
• periodic disorder

• random field disorder: ∆(u) =−R′′(u) short-ranged
statics: ζ = ε

3 (exact), depinning ζ = ε
3 (1+0.14331ε + . . .)

• random bond: R(u) short-ranged
statics: ζ = 0.20829804ε +0.006858ε2, dynamics → RF
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Why is a cusp necessary?
. . . calculate effective action for single degree of freedom. . .
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Generalization for a manifold 

How to measure the disorder correlator ∆(u) =−R′′(u)
Put the manifold in a parabolic well centered around w:

H w
tot[u] = Hel[u]+HDO[u]+

m2

2

∫

x
(u(x)−w)2 .

Find the minimum-energy configuration (“minimizer”) uw(x), and
minimum energy V̂ (w):

V̂ (w) := min
uw(x)

H w
tot[uw] .

Correlation function of V̂ (w) disorder correlator effective potential

V̂ (w)V̂ (w′)
c
= LdRm(w−w′)

center-of-mass position of the interface: uw := 1
Ld

∫
x uw(x). Then

hwhw′
c = [uw−w][uw′ −w′]

c
= m−4L−d∆m(w−w′)≡−m−4L−dR′′

m(w−w′) .

(Le Doussal 2006)
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Disorder Force-Force Correlator 
versus Avalanche Moments 

formulas
u−w = w
F(w)F(0) u
ˆ
|w|

h(x) = u(x)−w ∆′(0+)

Z(λ ) :=
∫ ∞

0
dS p(S)

[
eλS−1

]

6

formulas
u−w = w
F(w)F(0) u
ˆ
|w|

h(x) = u(x)−w

|∆′(0+)|
m4 =

〈
S2

〉

2〈S〉

Z(λ ) :=
∫ ∞

0
dS p(S)

[
eλS −1

]
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Measuring the cusp = effective action

1

∆(w − w′) = m4Ld [uw − w] [uw′ − w′]

Δ = renormalized disorder correlator 

PLD+KW+A. Middleton
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Depinning in 1+1 dimensions
ζ = ε

3 +0.04777ε2: 1.0 (1 loop), 1.2±0.2 (2 loop), 1.25 (numerics).
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RFm = 0.71, L = 512
RBm = 0.71, L = 512

FIG. 3: The difference between the normalized correlator Y (z) and
the 1-loop prediction Y1(z).

We have studied the behaviour of the critical force f c(m)
for the two classes of disorder. Because of (6), one has√

∆(0)m ∼ m2−ζ hence one obtains a parameter free linear

scaling shown in Fig.2. For large m the linear scaling does

not hold, while it holds for smaller m up to the point where

the correlation length becomes of the order of L (mL of order
10 again ??). Note that c1 < 0 as discussed below.
We now turn to the FP function determination. Since there

are two scales in∆(u) hence we write:

∆(u) = ∆(0)Y (u/uξ) (7)

where Y (0) = 1 and one determines uξ such that
∫

dzY (z) =
1 hence uξ =

∫
∆/∆(0). The function Y (z) is then fully uni-

versal and depends only on space dimension. We have deter-

mined the function Y (z) from our numerical data both for RF
and RB disorder. For small masses the two function are found

to coincide within statistical errors. We also observe a cusp,

i.e. Y ′(0) = −... (show Y (z) ??). The predictions from the
FRG is that Y (z) = Y1(z) + εY2(z) + O(ε2) with ε = 4− d.
The one loop function is the same as for the statics and given

by the solution of Y = Y1(z) with γz =
√

Y − 1 − ln Y

and γ =
∫ 1
0 dy

√
y − ln y − 1 ≈ 0.5482228893. Since the

measured Y (z) is numerically close to Y1(z), as was found
in the statics, we plot in Fig.3 the differential Y − Y1. The

overall shape of the difference function is very similar to the

one obtained for the RF statics in d = 3, 2, 0which was found
to exhibit only a weak dependence in d. However the over-
all amplitude is larger by a factor of order 1.25. This factor
between statics and dynamics is consistent with the two loop

prediction. We have plotted the function Y2(z) = d
dεY (z)|ε=0

which, as for the statics turns out to close to the numerical re-

sult **Alberto put the zero **

Examples of universal amplitudes are ∆ ′′(0+)cd/2,

∆(0)3/(
∫

∆)2cx or ∆′(0+)2/∆(0)cy, check exponents of c
give one loop predictions ** see what we do about this, Kay

check the powers of c and one loop predictions **

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

∆(w)/∆(0)

S

1–loop
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FIG. 4: Collapse of the 3 points function for RF and RB disorder.

Simlations has been performed for systems of size L = 512 and
massm = 0.071. The line represents the 1–loop predtiction f(x) =
(1 − x)2

To investigate deeper the validity of FRG we measure the

third cumulant function, defined as:

m2p(w′ − u(w′) − (w − u(w)))3
c

= L−2dS(w′ − w)(8)

The lowest order prediction [19] is S(w) =
12
m2 ∆′(w)(∆(w) − ∆(0)). Numerically one finds the

correct sign and to check the scaling in a parameter-free way

we define S =
∫ w
0 S(w)/

∫ ∞
0 S(w) = F (∆(w)/∆(0)). The

function F (x) hereby defined is expected to be universal.
Indeed we find, as can be seen in Fig.4, that RB and RF give

result identical within statistical errors.

The problem of characterizing the universality of the distri-

bution of the finite size fluctuations of the critical force bear

some similarity with the problem of the finite size fluctuations

of the ground state energy in the statics. There, for the directed

polymer several ”universal” distributions were found depend-

ing on the procedure and the geometry. The Tracy-Widom

distribution (for various β) was found for fixed endpoint or
uniform KPZ field. On a cylinder the large deviation function

ln(eαF ) = L(κ1α − κ2G(κ3α)) where G(z) is universal.
For the critical force problem there are several procedures.

Here we study the mass. Another procedure is the cylinder. A

third one is the fixed center of mass studied with FRG but hard

to study numerically. For each procedure there are fully uni-

versal quantities (different a priori in each procedure). Fully

universal means independent of microscopic details, and of

the model. It usually requires fixing two scales one in the u
direction the other in the x direction. There are additional uni-
versal quantities (usually amplitudes) however which depend

of the microscopic details only through renormalized elastic

constant cR and require fixing only one scale.

Here one measures:

m2p(w − u(w))p
c

= L(1−p)dC(n)(0, ..0) (9)

with C(2)(0, 0) = ∆(0). Using the proper scaling

A. Rosso, P. Le Doussal, KW, PRB 75 (2007) 220201
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Experiments on contact line
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The renormalized force-force correlator 
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size distribution ?

formulas
u−w = w
F(w)F(0) u
ˆ
|w|

h(x) = u(x)−w

|∆′(0+)|
m4 =

〈
S2

〉

2〈S〉

P(S) ∼ S−τ , τ = 2− 1
d +ζ

Z(λ ) :=
∫ ∞

0
dS p(S)

[
eλS−1

]

6



difference in the field-sweeping rates [4]. The Bark-
hausen jumps were directly visualized and characterized
from serial time-resolved domain images. We prepared
several Co films having thickness smaller than the typical
domain-wall width of 50 nm [18] to avoid the magnet-
ization change along the film thickness direction.

In Fig. 2(a) we demonstrate a series of six representa-
tive domain-evolution patterns of 25-nm Co film ob-
served successively by means of the MOMM, where one
can directly witness the Barkhausen avalanche. Here, the
colors from red to blue indicate the elapsed time during
4 sec according to the color palette at the bottom of the
figure. Domain-evolution patterns in each picture clearly
exhibit discrete and jerky jumps in the magnetization
reversal process. Moreover, as the experiments are repeat-
edly performed at the same area of the film, magnetiza-
tion reversal proceeds with quite different jumps every
time: the occurrence of these jumps seems to be random
with respect to interval, size, and location. A visualiza-
tion of the domain evolution by means of the MOMM

enables us to directly witness the randomness of location,
in addition to the randomness of interval and size of the
jumps as clearly demonstrated in Fig. 2(a). Obviously, one
could relate these jumps to the Barkhausen avalanches.
Note that a simple 180! domain wall exists throughout
the avalanche process. This is expected from the uniaxial
anisotropy induced during the sample preparation pro-
cess. The observations on other samples having different
thickness are not significantly different from those on the
25-nm film, where the simple 180! domain walls move
with the similar Barkhausen avalanches.

We have determined the magnetization reversal curve
with time from the time-resolved domain image in
Fig. 2(a), considering the fact that the net magnetic
moment in the direction of an applied field is simply
proportional to the reversed domain area. In Fig. 2(b),
we plot the magnetization reversal curves corresponding
to the six domain-evolution patterns in Fig. 2(a), where
a stepwise feature is vividly witnessed. Each step in the
curve is corresponding to the area swept by a sudden
jump clearly visualized in Fig. 2(a). The interesting char-
acteristic of the curves in Fig. 2(b) is the presence of steps
whose time interval and amplitude randomly fluctuate
among the curves.

Through a statistical analysis of the fluctuating size of
the Barkhausen jump from more than 1000 times repeti-
tive experiments for each sample, the distribution of the
Barkhausen jump size was obtained. We define the jump
size s to be the area when it has two end points outside the
image, since most of the Barkhausen jumps spread much
outside the visualized region as illustrated in Fig. 2. Our
definition of s is justified by the observation of the uni-
versal critical exponent irrespective of size of the field of
view via the change of magnification from "50 to
"1000, as clearly demonstrated in Fig. 3. The distribution
is found to exhibit power-law behavior and fitted as
P#s$ % s&! with critical exponent ! ' 1:34( 0:07,
1:29( 0:06, 1:32( 0:03, and 1:30( 0:05 for 5, 10, 25,
and 50-nm Co films, respectively, as plotted in Fig. 3.

FIG. 2 (color). (a) A series of six domain images showing the avalanches of the domain structure captured successively on the
same 400" 320 "m2 area of a 25-nm Co film. The color code represents the elapsed time from 0 to 4 sec when magnetization
reversal occurs. The sample was saturated downward first, and then a constant field was applied upward, denoted by the solid arrow,
during observation. (b) Magnetization reversal curves obtained from the corresponding domain patterns of (a).

FIG. 1. Schematic of magneto-optical microscope magne-
tometer (MOMM) setup. The relevant optics is adjusted to
provide an incident illumination angle of 20! from the film
normal.

P H Y S I C A L R E V I E W L E T T E R S week ending
28 FEBRUARY 2003VOLUME 90, NUMBER 8

087203-2 087203-2

Kim, Choe, Shin, PRL 
90 (2003) 87203 

We witness that the distribution P!t" of the separating
time t between two Barkhausen jumps also follows a
power law for all samples.

The most striking feature of Fig. 3 is the fact that the !
values are in the same universality class ( # 1:33) for all
samples within the measurement error despite the differ-
ence in the film thickness. We may expect that the 50-nm
film has about a 10 times larger number of defects com-
pared with the 5-nm film, since all samples were prepared
with the same preparation conditions except the thick-
ness. Our experimental result implies an invariance of the
critical exponent ! irrespective of the number of defects
in the Co thin films, within a thickness range smaller than
the domain-wall width. This result is consistent with the
recent theoretical studies predicting that the variation of
the number of defects does not affect the critical expo-
nent, but only changes the cutoff where the distribution
deviates from the power-law scaling [5,13]. In Fig. 3, note
that the cutoff of the power-law scaling exists in all
samples. The origin of the cutoff is still controversial:
the variation of disorder distribution [5,13], the demag-
netization effect [2,4], or the finite size effect [7,8] has
been suggested to explain the origin. In the present work,
as clearly seen in Fig. 3, with varying magnification of
observation for the 25-nm Co sample, it is revealed that
there exists a cutoff at each magnification, which implies
that cutoff in our result is originated from the finite size
effect of the field of view of the microscope.

A visualization capability of the MOMM enables us to
directly investigate the motion of the domain wall in the
Barkhausen criticality. The repeated observation of the
motion of the domain wall reveals that there exist some
pinning segments around which domain walls are very
flexible. The flexible part of the domain wall moves
forward via a Barkhausen jump while the pinned part is

fixed at the same position for a long time. This is quite
expected because of the role of disorders as the pinning
sites. The common pinned segment can be simply de-
tected by superimposing each domain-wall image as ex-
hibited in Fig. 4(a). Interestingly enough, the red and blue
lines representing the domain walls observed at the same
sample area in successive measurements seem to be very
different at a glance, but they have common segments of
domain wall whose positions are denoted by the arrows.
This common segment does not exactly reappear as we
repeat our experiment. If there is significant spatial cor-
relation between disorders and thus, the random pinning
potentials due to disorders are not localized, one should
expect corresponding reproducibility in the Barkhausen
avalanche [19,20], contrary to our observation. Therefore,
we can conclude that the disorders are spatially uncorre-
lated or only short-range correlated in our system.

It is very interesting to note that the critical features
continue to appear even when there exists a strong pin-
ning site in the observed area. Images of domain walls
around the strong pinning site were repeatedly obtained at
the same area and then, they were superimposed. The
resultant image is illustrated in Fig. 4(b), where the
position of the strong pointlike pinning site is indicated
by the solid arrow and the different color represents each
repeated experiment. The pinning site in Fig. 4(b) was
also observed in a pure optical image, while most of the
pinning sites could not be identified by optical image
probably due to the resolution limit of the optical micro-
scope. As nicely demonstrated in Fig. 4(b), the domain
wall is still flexible in this case. The flexible and dangling
part of the domain wall intersecting this pinning site
jumps to the other state as indicated by the dotted arrow.
Note that although the overall domain evolution is mainly
governed by this strong pinning site, there still exists
detectable fluctuation in the detailed domain evolution.

To quantitatively understand the role of disorders in
the process of the Barkhausen avalanche, we superimpose
domain-wall images 100 times repeatedly measured at
the same area and then represent the number of finding of
wall as the color code. Thus, it is possible to generate
the distribution map of disorders as illustrated in Fig. 4(c).
It is very interesting to note that there clearly exists a
more probable domain-wall region (red) indicating
the role of disorders in the process of Barkhausen ava-
lanche, even though we could not find the clear pinning
site at a glance. Our direct observation and quantitative
analysis provide a significant insight to the Barkhausen
criticality that the random fluctuation and the reproduc-
ible pinning are counterbalanced in both cases of strong
and weak pinning cases.

Since the critical exponent is a key parameter in the
description of this phenomenon, we need to compare the
value of ! with theoretical prediction. The prediction of
! for a two-dimensional system is diversely given as 1.5
for classical plain-old criticality [13], #1:0 for SOC
[7,21], and 4=3 for the generalized CZDS model [10,12].

FIG. 3 (color). Distributions of the Barkhausen jump size in
25 and 50-nm Co samples. Distributions in 5, 10, and 50-nm
Co samples are shown in the insets. Fitting curve with ! $ 1:33
is denoted at each graph.
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is chosen in the 3–20 kHz range, roughly half of the sam-

pling frequency, as usual in noise measurements.

The analysis of Barkhausen avalanche distribution is

performed following the procedure discussed in Ref. [3].

We impose a reference level for yr for the signal y!t",
chosen above the background noise. The duration T of the
Barkhausen avalanches is defined as the interval within

two successive intersections of the signal with the y ! yr
line. The avalanche size s is calculated as the integral of
the signal between the same points. We observe that the

avalanche distributions follow a power law

P!s" ! s2tf!s#s0", P!T " ! T2ag!T#T0" , (1)

where s0 and T0 indicate the position of the cutoff to the

power law behavior. The critical exponents result in being

independent of the reference level for a reasonable range

of yr [3].

We employ several different soft magnetic materials,

both polycrystalline and amorphous: an Fe-Si 7.8 wt%

strip (30 cm 3 0.5 cm 3 60 mm) produced by plan

flow casting, annealed several times around 950 ±C to

obtain grains of average dimension of 25 mm; two strips
of Fe-Si 6.5 wt% (30 cm 3 0.5 cm 3 45 mm), one

annealed for 2 h at 1200 ±C, with grains of 160 mm,
and the other annealed for 2 h at 1050 ±C, with grains of
35 mm [16]. The amorphous samples have composition

of the type FexCo852xB15 and we employ Fe21Co64B15
as cast (20 cm 3 1 cm 3 22 mm), Fe64Co21B15 as cast

(28 cm 3 1 cm 3 23 mm). With these highly magne-

tostrictive alloys [ls $ !30 50" 3 1026] a tensile stress

of s $ 100 MPa is applied during the measurement. The
applied stress is found to enhance the signal-noise ratio,

reducing biases in the distributions, but does not change

the exponents [17]. A partially crystallized Fe64Co21B15
(22 cm 3 1 cm 3 23 mm) is also employed, with an-
nealing for 30 min at 350 ±C and then for 4 h at 300 ±C
under an applied tensile stress of 500 MPa. This induces

the formation of a-Fe crystals of about 50 nm, with a
crystal fraction of $5% [18].

In Fig. 1a we show the avalanche size distribution, ob-

tained for the smallest available magnetic field rates (f !
3 5 mHz). We clearly see that the data can be grouped in
two universality classes with t ! 1.50 6 0.05 and t !
1.27 6 0.03. The first class includes all the Si-Fe poly-
crystals and the partially crystallized amorphous alloy,

while the amorphous alloys under stress belong to the sec-

ond class. For the materials in the first class, we observed

a linear decrease of the exponents on the frequency f of
the external magnetic field, in agreement with earlier find-

ings [3]. The material in the second class does not show

any noticeable dependence of the exponents on the field

rate. We note that t % 1.3, independent of the frequency,
was previously measured in Perminvar [4]. Next, we mea-

sure the distribution of avalanche durations (see Fig. 1b)

and find a ! 2.0 6 0.2 and a ! 1.5 6 0.1 for the two
classes. The relatively large error bar should be considered

FIG. 1. (a) Distributions of Barkhausen jump sizes measured
in different materials for the lowest available driving frequency.
The solid line has a slope t ! 1.5 while for the dashed one t !
1.27, corresponding to the two universality classes. (b) Simi-
lar plot for duration distributions. The solid line has a slope
a ! 2, while for the dashed one a ! 1.5.

as an upper limit and is due to the limited range of scaling

and the presence of unavoidable excess external noise at

low durations. Also in this case, a decreases linearly with

f for the materials belonging to the first class.
The scaling of the cutoff of Barkhausen avalanche dis-

tributions has been the object of an intense debate in the

literature [6–9,11]. In Ref. [8] the control parameter was

identified with the demagnetizing factor k. We thus mea-
sure the Barkhausen avalanche distributions varying k, us-
ing samples of different aspect ratios. In particular, we use

the same sample and cut it progressively in shorter pieces,

recording the noise always in the same region, whose size

is limited by the pickup coil width. In this way only k
is varied, while stress, internal disorder and system size

are kept constant. The demagnetizing factor is estimated

as k ! 1#mc 2 1#mi , where mc is the linear permeability

around the coercive field and mi is the intrinsic permeabil-

ity (i.e., in an infinite strip) estimated using a magnetic

yoke [19].

We perform the measurements on the Fe-Si 6.5 wt%

1200 ±C (with lengths spanning from 28 to 10 cm) and

the Fe21Co64B15 (from 27 to 8 cm) under constant tensile

4706
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Spin Glasses (SK model)

Avalanches in mean-field models and the Barkhausen noise in spin-glasses

Organizing the n replica into k groups subject to the same field
hi=1,...,k = h + h̃i/

√
N , with

∑
a h̃a = 0, and analyzing the

cumulant expansion of the potential W [{hi}], the k-point cor-
relator (3) can be extracted in the limit n → 0. Expanding
A(Q, {ha}) to second order in h̃i, the potential is evaluated at
the saddle point where Qab assumes Parisi’s equilibrium so-
lution qh̄(x). However, due to the explicit breaking of replica
symmetry by the external fields ha, a sum over inequivalent
saddle points differing by replica permutations of Qab has to
be performed. Generalizing techniques introduced in [34], we
find a compact integral representation for the k’th cumulant

m(h1)...m(hk)
J,c

=
−k

(−β)k

∫
dky δ(

k∑

i=1

yi)∂h̃1
...∂h̃k

φ(0, y),

where φ(x, y) solves the differential equation

∂φ

∂x
= −β2

2

k∑

i,j=1

h̃ih̃j dqh(x)

dx

(
∂2φ

∂yi∂yj
+ x

∂φ

∂yi

∂φ

∂yj

)
,

φ(x = 1; {yi}) = log

(
k∑

i=1

exp(yi)

)
. (5)

In order to unambiguously identify shocks we need to take the
limit N−1/2 $ T → 0. It is known [18, 20] that the non-
analyticities ∝ |h̃i| in the cumulants are obtained by an expan-
sion of the diffusion-type equation (5) to first order in the last,
non-linear term. For k ≥ 2, the result encapsulates the full
statistical information about jumps [33],

(mh1−mh2)
k = h̃12

∫ ∞

0
ρh(∆m)(∆m)k d∆m+O(h̃2

12),

(6)
where h1,2 = h + h̃1,2/

√
N , and h̃12 = h̃1−h̃2 > 0 and a

density (per unit of δh̃) of jumps of size ∆m > 0, cf. Eq. (2)1:

ρh(∆m) = ∆m

∫ qc

q−m

dq νh(q)
exp[− (∆m)2

4(qc−q) ]√
4π(qc − q)

θ(∆m). (7)

The weight νh(q) ≡ limT→0[Tdqh/dx]
−1 can be interpreted as

the probability density, per unit energy, of finding a metastable
state at overlap within [q, q + dq] with energy close to the
ground state [31]. The density of shocks receives contribu-
tions from the largest (q ! qc(T = 0) = 1) to the small-
est overlaps qm(h) ≈ h

2/3
. Jumps in overlap of order O(1)

are indeed expected due to field chaos [30]. A useful check of
Eq. (7) is provided by the average magnetization jump which
turns out to equal the thermodynamic (field cooled) susceptibil-
ity,

∫
ρh(∆m)∆md∆m = limT→0 T−1

∫ 1
0 dx(qc − q(x)) =

χFC(T = 0). This is expected since the intra-state (zero-field
cooled) susceptibility vanishes as T → 0, the susceptibility re-
sponse being entirely due to interstate transitions.
The formula (7) has a very natural interpretation. If we take
h̃12 ) 1 in (6) we only need to consider the possibility that

1It contains a piece δ(q − qm)xm/T when q(x) exhibits a plateau at x ≤
xm (if h̄ #= 0), hence the notation q−m in the integral. The integral measure can
also be written as

∫ xc/T
0 d(x/T ).

the ground state and the lowest-lying metastable state cross as
we tune h from h̃1 to h̃2, corrections being of order O(h̃2

12).
The disorder-averaged density of states of this two-level sys-
tem is described by νh(q)dq dE. The two states differ in Nfl =
N(1−q)/2 flipped spins. In the SK model the magnetization is
uncorrelated with the energy, and one thus expects the magne-
tization difference between the states to be a Gaussian variable
of zero mean and variance 〈∆m2〉q = 4Nfl/N = 2(1 − q). If
∆m > 0, a jump at equilibrium occurs once h̃12 = E/∆m.
For the shock probability per unit h̃ one thus expects

∫ qc

q−m

dq

∫ ∞

0
dE νh(q)

exp[− (∆m)2

2〈∆m2〉q ]√
2π〈∆m2〉q

δ

(
h̃12 −

E

∆m

)
, (8)

reproducing precisely Eq. (7). The above result (7) is generally
valid for models described by RSB. It thus applies to p-spin
models, where there is only one step of RSB, qh=0(x) = q0 +
(q1 − q0)θ(x − x1). The avalanche distribution then simplifies
with

∫
dq ν(q) → x̂1

∫
dqδ(q − q0), x̂1 = x1/T , into the form

ρ(p>2)

h
(∆m) = x̂1∆m

exp[− (∆m)2

4(q1−q0)
]

√
4π(q1 − q0)

θ(∆m). (9)

One verifies that its second moment agrees with Ref. [28]. The
distribution (9) is non-critical, peaking around a typical size
∆m ∼ 2

√
q1 − q0, with ρ(∆m) ∼ ∆m at small ∆m (similar

to one of the lower curves in Fig. 1). The case of SK with full
replica-symmetry breaking is much richer, as there is a T = 0
limit function q(x̂). The weight with which events at overlap
distance 1− q contribute is a power-law [35],

νh(q|1 $ 1− q $ T 2) = C(1− q)−3/2 , (10)

with C = 0.32047 [36]. This holds independently of the exter-
nal field h, and of additional random-field disorder [37]. From
(10) and (7) it leads to a robust scale-invariant jump density:

ρ(∆m) ≈ 2C√
π

1

(∆m)τ
, ∆m ) 1 (11)

with τ = 1. The universal exponent τ = 1 for jump sizes
N−1/2 ) ∆m ) 1 results from superimposed contributions
from all overlaps, i.e. all scales, illustrated in Fig. 1. The cutoff
function for larger jumps ∆m " 1 depends on the applied field.
In zero field, q(x̂) is linear at x̂ ) 1. The resulting density
ν(0) = 1.34523 at q = 0 leads to the asymptotics

ρ(∆m) ≈ 2ν(0)√
π

e−(∆m)2/4

(∆m)τ ′ , ∆m $ 1 (12)

with τ ′ = 1. Plots at intermediate ∆m = O(1) are shown in
Fig. 1 using approximations to q(x̂). A small field produces a
plateau at qmin(h) = 1.0 × h

2/3
and while (11) remains un-

changed, the asymptotics (12) for ∆m $ ∆mh ∼ h̄−1/3 now
decays with τ ′ = −1, as for the one-step RSB case, replacing
in (9) x̂1 → x̂h ≈ ν(0)qmin(h) and q1 → qmin(h).
Accepting Eq. (8) to represent the joint distribution of q and
∆m, we can integrate it over ∆m instead of q, which gives

p-3

Le Doussal, Müller, Wiese, arXive: 1007.2069, 
EPL to appear.
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Avalanches
• avalanches appear in many systems: contact-lines, vortex 

lattices, domain walls, earthquakes, spin glaces, etc. 
• Self-Organized Criticality (SOC)
• Abelian Sandpile Model (ASM) is best-known example
• conjecture by Middleton-Narayan that Charge-Density 

Waves (CDW) are equivalent to ASM
• Galton process = Mean-Field (MF) = ABBM
• conjecture by Narayan-Fisher:
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long-range elasticity



The Galton process
• old question: survival probability of male line  

(Galton, Watson1873 )
• equivalent: driven particle in random force 

landscape which itself is a Brownian = records 
with drift

Avalanche-size distribution
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FRG calculation
Second Kolmogorov cumulant:

K̂(2)(w) := [u(w)−u(0)−w]2
c
= K

= 2 [∆(0)−∆(w)] = −2∆′(0+)|w|+O(w2)

=
〈
S2

〉

〈S〉 |w|+O(w2)

Third Kolmogorov cumulant (w > 0):

m2K̂(3)(w) = K

= −12 [∆(0)−∆(w)]∆′(w) ≈ 12∆′(0+)2w+O(w2)

=
〈
S3

〉

〈S〉 |w|+O(w2)

Fourth cumulant (w > 0):

+ + + +

tree structure emerges!
12



FRG-calculation
calculate the generating function Z(λ ) of avalanche-sizes S:

Z(λ ) =
1
〈S〉

(
〈eλS〉−1−λ 〈S〉

)

eλ [u(w)−w−u(0)]−1 = Z(λ )w+O(w2) for w > 0 .

Z(λ ) = ∑
∆′(0+)

!
!

!!"

#
#

#
#

#
##$

%
%

%%&

loop 1
k2+m2

∆(w)−∆(0)→ ∆′(0+)w+ . . .

Recursion Relation:

Z(λ ) = λ −∆′(0+)Z(λ )2
︸ ︷︷ ︸

trees
+

∆′′(0)
∆′(0+) ∑

n≥3
(n+1)2n−2

∫

k

[−∆′(0+)Z(λ )]n

(k2 +1)n
︸ ︷︷ ︸

loops with n outgoing legs

,

7



Z(λ )

MF

MF

numerics !dots"
1 loop !solid line"

1
lo
o
p

!3.0 !2.5 !2.0 !1.5 !1.0 !0.5
Λ

!1.0

!0.5

0.5

Z
#
!Λ"

Z(λ )=

MF = trees︷ ︸︸ ︷
1
2

[
1−

√
1−4λ

]

− ∆′′(0)
4
√

1−4λ

[
log(1−4λ )(3λ +

√
1−4λ −1)−2(2λ +

√
1−4λ −1)

]

︸ ︷︷ ︸
1 loop

+ . . .
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RF, d = 3+1, simulation
P. Le Doussal, A. Middleton, KW
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Avalanche-size distribution and comparison to 
experiment without fitting

measure
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is universal, i.e. ,

no fitting parameter!

〈s〉p = 1
〈
s2〉

p = 2 (3)
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Avalanche distribution
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6 Pierre Le Doussal, Kay Jörg Wiese: Elasticity of a contact-line and avalanche-size distribution at depinning

We now evaluate the second variation. Consider first
the sum of (39) and (40). Using the equation of motion
(45) for z̃ the combination δ(2,1)E + 1

2δ(2,2)E can be inte-
grated by part. Therefore, we obtain for the combination
[δ(2,1)E + 1

2δ(2,2)E ] + 1
2δ(2,2)E

δ(2,1)E + δ(2,2)E = −1
2

∫

y

z̃(x0, y)
[1 + z′0(x)2]3/2

∂xz̃(x, y)
∣∣∣
x=x0

− 1
2

sinϕ

∫

y,x>x0

h′′(y)
z′0(x)√

1 + z′0(x)2
z̃(x, y) . (58) new

The last term has been integrated by part w.r.t. y 2. To
continue, we note the useful equality ***Kay changed***

−
∫

y

z̃1(x0, y)
[1 + z′0(x)2]3/2

∂xz̃2(x, y)
∣∣∣
x=x0

= −
∫

y

z̃2(x0, y)
[1 + z′0(x)2]3/2

∂xz̃1(x, y)
∣∣∣
x=x0

+ sinϕ

∫

y,x>x0

h′′(y)
z′0(x)√

1 + z′0(x)2
z̃2(x, y) , (59) equal

which is a consequence of the two different ways to inte-
grate by part

∫

y,x>x0

[
κ2z̃1(x, y)z̃2(x, y) +

[∂xz̃2(x, y)][∂xz̃1(x, y)]
[1 + z′0(x)2]3/2

+
[∂y z̃1(x, y)][∂y z̃2(x, y)]

[1 + z′0(x)2]1/2

]
,

and to use the equation of motion for z̃1 (inhomogeneous)
and z̃2 (homogeneous).

Inserting z̃ = z̃1 + z̃2 into (58) and using the equality
(59) we get:

δ(2,1)E + δ(2,2)E = −1
2

∫

y

z̃2(x0, y)
[1 + z′0(x)2]3/2

∂xz̃2(x, y)
∣∣∣
x=x0

−1
2

∫

y

z̃1(x0, y)
[1 + z′0(x)2]3/2

∂xz̃1(x, y)
∣∣∣
x=x0

−
∫

y

z̃2(x0, y)
[1 + z′0(x)2]3/2

∂xz̃1(x, y)
∣∣∣
x=x0

−1
2

sin ϕ

∫

y,x>x0

h′′(y)
z′0(x)√

1 + z′0(x)2
z̃1(x, y) . (60) tot

We now discuss simplifications. Firstly, the last term in
eq. (60) exactly cancels δE(2,3b); this is shown using (46).

Secondly, from (46), (22) and (15), we obtain

∂xz̃1(x, y)
[1 + z′0(x)2]3/2

∣∣∣
x=x0

= − sin ϕ cos ϕκ2h(y)h0 . (61)

This shows that the second line, half the third line and
δ(2,3b)E cancel; the remaining half of the third line gives

2 Note that the integration by part of ∂y produces no sur-
face term. This can be made rigorous considering a periodic
modulation h(y). We thus restrict here to functions that can
be written as sum of periodic modulations.

the first term reported in eq. (62) below. The second term
comes from the first line of (60), using (50):

δ(2)E =
sinϕ cos ϕ sin θ

2 sin(θ + ϕ)
κ2 h0

∫

y
h(y)2 (62) 63

−1
2

sin2 θ sin(θ + ϕ)
∫

q
hqh−qFq̃(S(x))∂xFq̃(S(x))

∣∣∣
x=x0

To compute the second term we use rule (53), where at the
end S must be evaluated on the boundary S = sin(θ +ϕ).
To compute the first term we use the value (24) for h0.

This yields our final result for the elastic energy:

Eel[h] =
1
2

∫

q
εqhqh−q (63) yy2

with

εq

κγ
=

sin(θ) cos(ϕ)
t

+
(
r2 − 1

)
[t(r + t) + 1] sin2(θ)

t (r2 + 3rt + 3t2 − 1)

t =

√
sin(θ + ϕ) + 1

2
, r =

√
1 +

q2

κ2

. (64) final

One finds that εq is a scaling function of q/κ which re-
produces formula (31) for the energy of a uniform mode
εq=0 = m2 as computed in the previous section, and which
behaves as εq=0 ≈ γ sin2 θ|q| for large |q|.

**** Maybe a short discussion here of behaviour and
next to leading asymptotics. Not too long please.

ϕ + θ = π/2

4 Avalanche-size distributions

We now study the case of a disordered plate. This is mod-
eled by

*** write and explain model as in the paper with Eti-
enne with w etc..

4.1 Global statistics of avalanches

The experiment shows, as predicted by theory that the
motion proceeds by sudden jumps and avalanche motion.
Define S and introduce P (S) as in paper with Alberto.

We now recall the main results of Ref. and apply the
general formulation to various cases including case of the
contact line elasticity computed above.

The characteristic rescaled function Z̃(λ) is defined as:

Z̃(λ) :=
Sm

〈S〉

〈
eλS/Sm − 1

〉
(65)

Sm :=
〈
S2

〉

2 〈S〉 =
−∆′(0+)

m4
(66)

All averages are over the normalized probability P (S).
Then it was shown in () that Z̃(λ) satisfies, up to terms



Conclusions

• FRG provides a quantitative theory to calculate the 
distribution of avalanche sizes from first principles

• temporal evolution of avalanches in progress

Movie by A. Kolton


