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368 J. Jackle et aL / Structural relaxation #~ glasses 

cluding the resonant interaction between the sound waves and the tunneling-defect 

states at low temperatures. In section 4 we present the data of our ultrasonic atte- 

nuation measurements carried out in silica-type glasses in the temperature range 

between 0.3 and 100K and at frequencies from 30 to 500 MHz. In section 5 we 

compare our experimental results with the theory. In this section we discuss, fur- 

thermore, the nature of the defects which are responsible for reiaxation at both 

low and relatively high temperatures. 

2. Models of structural two-state defects in glasses 

In order to explain the particular acoustic [9-15] and dielectric [ 16] properties 

of glasses a number of detailed structural models have been proposed. A common 

characteristic of these models is that they describe localized structural defects 

which can exist in various configurations. It follows from probability considerations 

for a random-network structure that the number of the different accessible configu- 

rations should, in the majority of cases, be two. Anderson and B6mmei [9] discus- 

sed a model for SiO 2 glass in which a fraction of the oxygen atoms can perform a 

transverse motion between bonding silicon atoms for which two potential minima 

exist (defect A in fig. 1). The position of the oxygen atom in either of these poten- 

tial wells represents the two states of this defect. A similar model has been proposed 

by Strakna [ 17] who assumed that the two potential minima of the oxygen atoms 

in quartz glass occur in the bond directions (defect B in fig. 1). A third l:,ossibility 

is given by the rotation of the SiO 4 tetrahedra (defect C in fig. 1) by a small angle 

in a double-well potential [ 18]. Apart from quartz glass these models are equally 

~ -B A 

~l J', 
~,,,° 

"QUARTZ- CRYSTAL" "QUARTZ-GLASS" 

Fig. 1. Schematic representation of crystalline and glassy quartz structure with three possible 
types of two-state defects in the glass (A, B and C) [191. 

Structural glasses 
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from Jackle,et.al., J.Of.Non-cry. Solid. (1976)

Solids but no long range order
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 Specific heat
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Two-level states in glasses 

1. Introduction 

1659 

One of the more unexpected results in solid state physics was provided by the first 

reliable measurements below 1 K of heat capacity C and  thermal conductivity K in a 

number of glasses (Zeller and  Pohl 1971). Beforehand it had been argued that because 

low-temperature thermal properties are dominated by phonons (quantised lattice 

vibrations) of low frequency, and because in crystals these phonons can be described 

as long-wavelength sound waves propagating through an  elastic continuum, there 

should be little difference between glasses and  crystals in this regime where the phonons 

are insensitive to microscopic structure. In fact, as shown in figures 1 and  2 for vitreous 

and  crystalline silica, the heat capacity and  thermal conductivity are radically different 

in the two materials. 

\ Vitreous sil ica 

\ 

\ 
\ 

\ 

1 10 100 
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Figure 1. The heat capacity C (  T )  of vitreous silica and crystalline quartz as a function of 

temperature T (Jones 1982, after Zeller and Pohl 1971), plotted as C / T 3  against T 

The results in a-quartz are typical of an insulating crystal. The heat capacity varies 

as T 3  below 10 K, where T is the absolute temperature, as expected from the Debye 

theory. This theory predicts that in the long-wavelength limit the density of phonon 

states g ( w )  varies quadratically with the phonon (angular) frequency w if the velocity 

of sound U ,  is constant so that wq = v,,, where q is the phonon wavevector. At higher 

temperatures phonon dispersion initially gives a more rapid increase of g ( w )  with w,  

and so C increases more rapidly than T3,  but ultimately, above the Debye temperature 

0, C approaches the classical limit. 

The cubic temperature variation of K can be interpreted qualitatively by means of 

the kinetic formula 

K =fCV,l (1.1) 

from W.A.Phillips,Rep. Prog.Phys. (1987)

C(T)∝ T3

Debye theory

Boson peak

linear on T

Crystals

Glasses

Debye theory gives

T

CT −3

Specific heat
1)    is linear in T at         

       low temperature       
2) has peak at 10K

Crystal

Glass
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Linear T term in specific heat 
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from Yu and Leggett
Comments Cond. Mat. Phys.  

(1988)

Zeller and Pohl, (1972)
 
C(T )  T

Seen in a wide  
variety of glasses
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Boson peak
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from Yu and Leggett
Comments Cond. Mat. Phys.  

(1988)

Seen around 10 K
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of these impurity modes. In spite of much theoretical
effort, which focuses on the interaction between (tunnel-
ing) defects (Yu and Leggett, 1988; Yu, 1989; Copper-
smith, 1991; Leggett, 1991; Burin et al., 1998) or between
soft potentials (Parshin, 1994a), universality remains
poorly understood. Thus the purpose of this paper is to
provide a critical review of the experiments on which
this claim of universality is based, and through this to
contribute to our understanding of the physical nature
of the defect modes. We shall concentrate on measure-
ments of low-temperature thermal conductivity and
sound attenuation, including internal friction. These
measurements permit the most direct test of universality,
and they illustrate a particularly striking property of
these impurity modes even without the use of any par-
ticular theoretical model.

Without specifying at this point exactly what we mean
by universality (this will be done at the end of Sec. III),
we will say right now that exceptions have been ob-
served. In addition, an important point to be stressed is
that the same remarkable defect modes have also been
shown to exist in a large number of disordered crystals,
including at least one quasicrystal. These measurements
will also be reviewed. We shall reach the conclusion that
the absence of long-range order, which characterizes
amorphous solids, is neither sufficient nor necessary for
these excitations to exist.

II. EXAMPLES OF EXPERIMENTAL RESULTS

Before proceeding, we shall show a few examples of
the experimental observations to be reviewed. The char-

acteristic thermal conductivity of bulk amorphous di-
electric solids (including that of an amorphous metal in
its superconducting state) is shown in Fig. 1, taken from
Cahill and Pohl (1988a). Below !1 K, the thermal con-
ductivity varies nearly as the square of the temperature
(T2), and above !100 K it approaches a temperature-
independent value, called the minimum thermal conduc-
tivity, which has been reviewed previously (Medwick
and Pohl, 1997; Pohl, 1998). In the present review, we
concentrate on the temperature range below 1 K. Note
the two dashed lines in Fig. 1, which are connected by a
double arrow. They are proportional to T2 and indicate
the range spanned by practically all amorphous solids
measured to date, which will be reviewed here. The two
lines are spaced by a factor of 20, which we call the
‘‘glassy range,’’ and present the first example of the uni-
versality to be discussed.

As examples of acoustic attenuation, Fig. 2 shows the
internal friction Q!1 of amorphous solids, again includ-
ing an amorphous metal (this one in its normal state;
Topp and Cahill, 1996). Above 10 K, the internal friction
depends strongly on the chemical composition. Below
that temperature, it approaches a temperature-
independent value. The dropoff at the lowest tempera-
ture depends on the frequency of measurement, occur-
ring at lower temperatures as the measuring frequency
decreases, as is illustrated in Fig. 3. This dropoff can be
explained in the tunneling model, together with the pla-
teau (Jäckle, 1972). In this review, we shall concentrate
on the plateau and ignore measurements of acoustic at-
tenuation by resonant scattering, referring the reader to

FIG. 1. Thermal conductivity of several amorphous solids (Ca-
hill and Pohl, 1988a). The conductivities of all glasses mea-
sured to date below 1 K lie in the range spanned by the two
dashed straight lines shown here, separated by the double ar-
row, which we call the glassy range.

FIG. 2. Internal friction of several amorphous solids (Topp
and Cahill, 1996). Between 0.1 and 10 K, the internal friction is
nearly independent of temperature and measuring frequency.
Within this temperature range, the magnitude of the internal
friction for all glasses falls within about a factor of 20 as shown
here by the dashed straight lines and the double arrow, called
the glassy range, except for some a-Si films that are mentioned
later. For a discussion of the dropoff below !0.1 K, see the
text.

992 Pohl, Liu, and Thompson: Thermal conductivity and acoustic attenuation in amorphous solids

Rev. Mod. Phys., Vol. 74, No. 4, October 2002
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Thermal conductivity

from R.O.Pohl,et.al.,RMP (2002)
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Figure 2. The thermal conductivity K ( T )  of vitreous silica and crystalline quartz (Jones 

1982, after Zeller and Pohl 1971), plotted logarithmically. 

where 1 is the phonon mean free path. At low temperatures phonons are scattered by 

defects in the crystal or by the surfaces of the sample, so that 1 is independent of 

temperature and  K is therefore proportional to T3.  Above 40 K the reduction of 1 by 

phonon-phonon scattering leads to the peak and subsequent fall in K .  

These ideas are well known and serve to emphasise the peculiarity of the results 

in vitreous silica, where C varies approximately as T and at 0.1 K is about two orders 

of magnitude greater in the glass than in the crystal. Below 1 K K varies as T19 but 

varies only slightly with temperature between 4 and  20 K before increasing at high 

temperatures to a value approaching that of crystalline quartz. Similar results are seen 

in a wide range of other amorphous solids; oxide, chalcogenide, elemental, polymeric 

and metallic glasses all show the same behaviour. A representative sample is shown 

in figures 3 and  4. 

The universality of the phenomena and the idealised temperature dependences of 

C proportional to T and K proportional to T’ proved great attractions for theorists. 

In retrospect this idealisation can be seen to have handicapped the search for a 

theoretical explanation, suggesting as it did very general models which were not 

supported by a detailed examination of the experimental results and which were 

ultimately unable to give quantitative agreement with experiment. For example, the 

first and perhaps most obvious explanation for C was in terms of electron states 

(Redfield 1971). In the amorphous state the sharp distinction between energy gaps 

from W.A.Phillips,Rep. Prog.Phys. (1987)

plateau

T2  term

κ

T

Glass
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T3 

boundary 
scattering

Umklapp 
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Mean free path of phonons deduced from 
thermal conductivity
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MFP ≈ 150λ

 
MFP ∝ λ 4

 
MFP ∝ λ

from Freeman,et.al., PRB (1986)

 

κ (T) = 1
3
Cph ω( ) υ MFP (ω )∫ dω
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Explanation of these 
unusual properties 
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cluding the resonant interaction between the sound waves and the tunneling-defect 

states at low temperatures. In section 4 we present the data of our ultrasonic atte- 

nuation measurements carried out in silica-type glasses in the temperature range 

between 0.3 and 100K and at frequencies from 30 to 500 MHz. In section 5 we 

compare our experimental results with the theory. In this section we discuss, fur- 

thermore, the nature of the defects which are responsible for reiaxation at both 

low and relatively high temperatures. 

2. Models of structural two-state defects in glasses 

In order to explain the particular acoustic [9-15] and dielectric [ 16] properties 

of glasses a number of detailed structural models have been proposed. A common 

characteristic of these models is that they describe localized structural defects 

which can exist in various configurations. It follows from probability considerations 

for a random-network structure that the number of the different accessible configu- 

rations should, in the majority of cases, be two. Anderson and B6mmei [9] discus- 

sed a model for SiO 2 glass in which a fraction of the oxygen atoms can perform a 

transverse motion between bonding silicon atoms for which two potential minima 

exist (defect A in fig. 1). The position of the oxygen atom in either of these poten- 

tial wells represents the two states of this defect. A similar model has been proposed 

by Strakna [ 17] who assumed that the two potential minima of the oxygen atoms 

in quartz glass occur in the bond directions (defect B in fig. 1). A third l:,ossibility 

is given by the rotation of the SiO 4 tetrahedra (defect C in fig. 1) by a small angle 

in a double-well potential [ 18]. Apart from quartz glass these models are equally 

~ -B A 

~l J', 
~,,,° 

"QUARTZ- CRYSTAL" "QUARTZ-GLASS" 

Fig. 1. Schematic representation of crystalline and glassy quartz structure with three possible 
types of two-state defects in the glass (A, B and C) [191. 

Low energy excitation in  
glasses
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from J.Jackle,et.al., J.Of.Non-cry. Solid. (1976)
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Two-level systems 
model
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E = Δ2 + Δ0
2

E

H =
Δ Δ0

Δ0 −Δ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Asymmetry energy
Tunneling energy

Δ
Δ0

Anderson, et al., (1972), 
Phillips (1972) 
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Two-Level Systems in glasses (Open question: 
What is the microscopic nature of TLS ?)
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Δ

 
Δ0 =ω0e

−
2mVd


Zero point energy 
of single well

ω0

Asymmetry energy : uniform distribution 
Tunneling energy: barrier heights V 

satisfy uniform distribution 
( we use Gaussian distribution 

instead)

Anderson, et al., (1972), 
Phillips (1972),  
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 Specific heat: linear T term
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Simple derivation: energy of TLS

density of 
state of 

TLS

E(T ) = dE∫ f (E)E n(E)

C(T ) = ∂E
∂T

∝ n0T

= n0 dE∫
1

e
E
kBT +1

E ∝ n0 T 2

Average 
energy

occupation
 number

Anderson, et al., (1972), 
Phillips (1972)
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Extend model to higher T: 
Einstein oscillators

Approximate 
excitations at high  
energy by harmonic 
oscillators (Einstein 
oscillators = EO).

EO is responsible for 
the peak in the 
specific heat around 
10K. 

15

Yu and Freeman, PRB (1987)

E
ωE

TLS EOSk
 
n(E) = n0[1+ SkΘ(E − ωE )]

DOS
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Specific heat over a broad 
temperature regime
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Thermal conductivity

How far 
a phonon can go 

before it hits something

How fast 
a phonon goes 

How much energy 
a phonon can carry

 

κ (T) = 1
3
Cph ω( ) υ MFP (ω )∫ dω

Heat is transported by phonons in glasses (Zaitlin and 
Anderson, 1975)
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Resonant scattering of TLS
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ρv3

spectral density 
(density of TLS)

deformation potential
(coupling of TLS and phonons)
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γ
 ω = E

 ω
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Thermal conductivity goes as 
T2  at low temperatures

19

 
MFP ∝ 1ω 

1
TDebye theory

κ (T)∝ T2
T 3

 

κ (T) = 1
3
Cph ω( ) υ MFP (ω )∫ dω
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Plateau in thermal 
conductivity

20

Plateau dominated by Rayleigh 
scattering of phonons
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Phonons (photons) are scattered by atoms
 or small size defects

 
MFP,Rayleigh
−1 = Bω 4

of these impurity modes. In spite of much theoretical
effort, which focuses on the interaction between (tunnel-
ing) defects (Yu and Leggett, 1988; Yu, 1989; Copper-
smith, 1991; Leggett, 1991; Burin et al., 1998) or between
soft potentials (Parshin, 1994a), universality remains
poorly understood. Thus the purpose of this paper is to
provide a critical review of the experiments on which
this claim of universality is based, and through this to
contribute to our understanding of the physical nature
of the defect modes. We shall concentrate on measure-
ments of low-temperature thermal conductivity and
sound attenuation, including internal friction. These
measurements permit the most direct test of universality,
and they illustrate a particularly striking property of
these impurity modes even without the use of any par-
ticular theoretical model.

Without specifying at this point exactly what we mean
by universality (this will be done at the end of Sec. III),
we will say right now that exceptions have been ob-
served. In addition, an important point to be stressed is
that the same remarkable defect modes have also been
shown to exist in a large number of disordered crystals,
including at least one quasicrystal. These measurements
will also be reviewed. We shall reach the conclusion that
the absence of long-range order, which characterizes
amorphous solids, is neither sufficient nor necessary for
these excitations to exist.

II. EXAMPLES OF EXPERIMENTAL RESULTS

Before proceeding, we shall show a few examples of
the experimental observations to be reviewed. The char-

acteristic thermal conductivity of bulk amorphous di-
electric solids (including that of an amorphous metal in
its superconducting state) is shown in Fig. 1, taken from
Cahill and Pohl (1988a). Below !1 K, the thermal con-
ductivity varies nearly as the square of the temperature
(T2), and above !100 K it approaches a temperature-
independent value, called the minimum thermal conduc-
tivity, which has been reviewed previously (Medwick
and Pohl, 1997; Pohl, 1998). In the present review, we
concentrate on the temperature range below 1 K. Note
the two dashed lines in Fig. 1, which are connected by a
double arrow. They are proportional to T2 and indicate
the range spanned by practically all amorphous solids
measured to date, which will be reviewed here. The two
lines are spaced by a factor of 20, which we call the
‘‘glassy range,’’ and present the first example of the uni-
versality to be discussed.

As examples of acoustic attenuation, Fig. 2 shows the
internal friction Q!1 of amorphous solids, again includ-
ing an amorphous metal (this one in its normal state;
Topp and Cahill, 1996). Above 10 K, the internal friction
depends strongly on the chemical composition. Below
that temperature, it approaches a temperature-
independent value. The dropoff at the lowest tempera-
ture depends on the frequency of measurement, occur-
ring at lower temperatures as the measuring frequency
decreases, as is illustrated in Fig. 3. This dropoff can be
explained in the tunneling model, together with the pla-
teau (Jäckle, 1972). In this review, we shall concentrate
on the plateau and ignore measurements of acoustic at-
tenuation by resonant scattering, referring the reader to

FIG. 1. Thermal conductivity of several amorphous solids (Ca-
hill and Pohl, 1988a). The conductivities of all glasses mea-
sured to date below 1 K lie in the range spanned by the two
dashed straight lines shown here, separated by the double ar-
row, which we call the glassy range.

FIG. 2. Internal friction of several amorphous solids (Topp
and Cahill, 1996). Between 0.1 and 10 K, the internal friction is
nearly independent of temperature and measuring frequency.
Within this temperature range, the magnitude of the internal
friction for all glasses falls within about a factor of 20 as shown
here by the dashed straight lines and the double arrow, called
the glassy range, except for some a-Si films that are mentioned
later. For a discussion of the dropoff below !0.1 K, see the
text.

992 Pohl, Liu, and Thompson: Thermal conductivity and acoustic attenuation in amorphous solids
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Combining two models: Yu-Freeman,PRB (1987) & 
Hunklinger, PRB (1992)
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Phonon scattering due to TLS 
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frequencies)
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Phonons (photons) modulate TLS energy splitting. TLS 
population redistributes to achieve new equilibrium. 
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Tunneling 

Thermal activation
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MFP,Einstein
−1 =

2αSk
π

ω

Phonons (photons) are absorbed and emitted when 
a harmonic oscillator is excited and de-excited

E
ωE

TLS EOSk

 
n(E) = n0[1+ SkΘ(E − ωE )]

Infinite number of levelsDOS

Jiansheng Wu and Clare C. Yu
Department of Physics and Astronomy, University of California, Irvine

  

Abstract
The dielectric substrates for superconducting qubits have fluctuating 
degrees of freedom such as two level systems that are a source of 1/f 
noise and decoherence. Recent experiments indicate that high stress 
silicon nitride has 2-3 orders of magnitude less dissipation Q-1. We 
present a model of why the stress reduces the attenuation, and 
possibly the noise. The basic reason is that high stress increases the 
potential barriers of the excitations, so that the fluctuators are not 
active at the experimental temperatures and frequencies. 

Two Level Systems (TLS)
• In two level systems an atom or group of atoms can sit 

in one of two places in a double well potential. 

• Two level systems are present in insulating amorphous 
materials such as in the insulating tunnel junction 
barrier and the substrate of the qubit.

• The energy asymmetry ! and the barrier height V which 

determines the tunneling matrix element !0  have a 

distribution.

• Phonons are absorbed and emitted when a two level 
system is excited and de-excited. 

   (inducing mechanical dissipation)

• Some TLS have electric dipole moments. 

   (inducing dielectric loss)  

• Fluctuating TLS produce noise.

• Mechanism of mechanical dissipation and dielectric 
loss due to TLS are similar.

TLS Produce Attenuation and Charge Noise 

Conclusions

•  TLS in substrates induce mechanical dissipation and  

   dielectric loss as well as charge noise.  

•  High-stress on silicon nitride will increase the barrier height 

   of TLS, thus exponentially reducing the scattering of 

   phonons due to TLS relaxation and thermal activation.  This 

   will suppress the dissipation.

•  High-stress Si3N4 would be a good low dissipation

   substrate. 

This work was supported by IARPA ( PI: Robert McDermott ).

How High Stress Reduces Dissipation in Silicon Nitride

TLSE

junction

SiN
x

Al

AlAl

Al2O3 substrate

via

TLS

Martinis et al.

Dissipation in High Stress Silicon 
Nitride is 2-3 Order of Magnitude 

Lower than Amorphous SiO2 

1)  Dissipation: 

     tan " = Q-1 = f0/! f 2 (10-3,10-2) 

     for most glasses, e.g.,SiO2.

2)  Q-1 for Stress-relieved Si3N4   

     is one order of magnitude 
     lower than  SiO2.

3)  Q-1 for high-stress Si3N4 is  2

     -3 orders of magnitude lower  
     than SiO2.

How do we reduce the noise and the dielectric loss? 

Why does High Stress Reduce Dissipation?

Thick silicon nitride resonator  
and cantilever 

Amplitude response

Answer: Stress increases barrier heights V which
               exponentially reduces TLS tunneling and
               thermal activation.

J. M. Martinis et. al., PRL 95, 210503 (2005).

TLS tunneling: 

Thermal activation: 

Stress- relieved Si3N4

Phonons (photons) 

excite TLS and lose 

energy.

High stress Si3N4

Due to high barrier, TLS 

are hard to excited. 

Phonons (photons) are 

unattenuated.

Southworth et. al., PRL 102, 225503(2009).

Comparison of Model with Experiment

! f

 f
0

Microwave dielectric loss for materials 
used in superconducting qubit fabrication.

1) Charge noise induces decoherence 
    of superconducting qubits.
2) Charge noise SQ is proportional to  

    dielectric loss tangent. 
3) Dielectric absorption by TLS easily 
    saturates with EM intensity.

4) At low frequencies SQ ~ T/#, 

    i.e., 1/f noise.

Resonant scattering: Phonons (photons) are absorbed and 
emitted when a TLS is excited and de-excited.

Rayleigh scattering: Phonons (photons) are scattered by atoms or 
small size defects.

Relaxation: Phonons (photons) modulate TLS energy splitting 
and induce a redistribution of the excited TLS.

Universal dissipation for many amorphous solids 2 (10-3,10-2 ).

Experimental data are from: Southworth et. al., PRL 102, 225503(2009).

Sunday, September 12, 2010

 ω = E

 ω E

Monday, September 20, 2010



Thermal conductivity
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How to measure the 
dissipation in glasses
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Measuring acoustic 
dissipation in glasses

Q−1 =
f0
Δf

28

 

A.K. Raychaudhuri and S. Hunklinger: Low Frequency Elastic Properties of Glasses at Low Temperatures 117 

into the superconducting ground state, the relax- 

ation rate due to electrons starts to decrease rapidly. 

Therefore phonons dominate the relaxation process 

at temperatures well below T~ and the elastic beha- 

viour should be similar to that of dielectric glasses. 

At temperatures around and above 2 K phonons 

give the main contribution to the relaxation even in 

normal conducting metallic glasses. Consequently re- 

laxation via phonons is dominant at very low and 

relatively high temperatures. 

Whether electrons or phonons determine the relax- 

ation of TLS in superconducting glasses in the vici- 

nity of 1 K depends crucially on frequency and on 

the value of T~. Ultrasonic measurements [19, 20] 

carried out around 1 GHz  on two superconducting 

glasses  ( C n 6 0 Z r 4 0  with Tc=0.4 K and Pd30Zrv0 with 

T~=2.6 K) are conform with these expectations in 

general. Our measurements at low frequency on 

both these material complement the high frequency 

experiments and reveal new features. 

III. Experimental Techniques 

Measurements of the internal friction Q-1 and of 

the sound velocity v E were carried out using a vibra- 

ting reed technique [21, 22]. One end of the sample 

(in the form of a ribbon) was clamped between two 

copper flats and the free end was driven electrostati- 

cally by a sinusoidal voltage of frequency fo/2. Since 

in an electrostatic drive without bias voltage the 

resulting force is proportional to the square of the 

voltage, it acts on the sample with frequency f0. 

When f0 matches with one of the natural frequencies 

f. of the ribbon, then resonance occurs. The natural 

frequencies are given by 

d (U 
f ~ -  4rc]/3 v~ (]5) 

where d is the thickness of the ribbon, L its length 

and n a constant with the values [21]: /31 = 1.875, f12 

=4.694, fl3=7.855 etc. v~ is the sound velocity deter- 

mined by Young's modulus Y. Thus by monitoring 

the resonance frequency as a function of tempera- 

ture, one can study the change in the sound velocity 

V E  9 

The absolute value of Q 1 has been obtained either 

from the shape of the resonance curve by slowly 

sweeping the driving frequency through reconance 

or by monitoring the free decay of the signal, depen- 

ding the frequency of the oscillation and the value of 

Q. The value of Q can be evaluated by applying the 

relations Q l=Af. / f ,  and Q=~zf.t., where Af. is 

the width of the resonance curve and t. the decay 

EXPERIMENTAL SET- UP 

DRIVE~. E~~PICKUP 

fo/2 

fo/2 REF ~ BIAS 
i INPUT n~ 

,oou se ,. oo 

CHART RECORDER 

INTEGRATOR 
Fig. 3. Schematic of the experimental set-up 

time of the amplitude of the free vibration. The first 

method is more convenient at higher frequencies 

because t, is relatively small, whereas the second 

method was usually applied at low frequencies. At 

intermediate frequencies both methods give the same 

value within 5 % which is the absolute accuracy of 

our measurement. 

To monitor small changes in Q - t  and f ,  (and hence 

in rE), i.e. in order to achieve higher precision, the 

sample has been locked to one of its resonances by a 

simple phase locked loop (see Fig. 3) consisting of a 

phase sensitive detector, an integrator and a voltage 

controlled oscillator, f ,  was determined with a high 

performance frequency counter with frequency aver- 

aging technique. While one output of the two-phase 

lock-in-amplifier is used as the phase sensitive detec- 

tor, the other output (90 ~ out of phase from the 

former) gives the amplitude of the oscillator which is 

proportional to Fo/f2Q -1, where F o is the driving 

force. If F o is kept ci~nstant the amplitude of oscilla- 

tion can be used to measure precisely relative chang- 

es in Q-1. In this way a resolution of about 1% or 

better can be achieved in measurements of Q- 1. 

Experiments below 0.5 K were carried out in a dilu- 

tion refrigerator by attaching the sample holder to 

the bottom of the mixing chamber. Ordinary resi- 

stance thermometry was used to record the tempera- 

ture. At the lowest temperatures extremely low vi- 

bration amplitudes had to be applied to avoid he- 

ating. There the strain at the free end was less than 

10 -7. Although this introduces more noise a preci- 

sion of i ppm can always be achieved in frequency 

measurements down to the lowest temperature. At 

higher temperatures higher strains can be applied, 

but if the amplitude of the oscillation is too high, the 

Raychaudhuri,et al. 
Z.Phys.B (1984)
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Universal dissipation in 
glasses

 Q
−1
 10−4 −10−3

29

R.O.Pohl,et al.,RMP (2002)

Zeller,et al.,PRB (1971)For various glasses such as 
SiO2, B2O3,...at 0.1K <T<10K

Due to two-level-systems 
(TLS) at low temperatures

Anderson, et al., (1972), Phillips 
(1972), Jackle (1972) 

of these impurity modes. In spite of much theoretical
effort, which focuses on the interaction between (tunnel-
ing) defects (Yu and Leggett, 1988; Yu, 1989; Copper-
smith, 1991; Leggett, 1991; Burin et al., 1998) or between
soft potentials (Parshin, 1994a), universality remains
poorly understood. Thus the purpose of this paper is to
provide a critical review of the experiments on which
this claim of universality is based, and through this to
contribute to our understanding of the physical nature
of the defect modes. We shall concentrate on measure-
ments of low-temperature thermal conductivity and
sound attenuation, including internal friction. These
measurements permit the most direct test of universality,
and they illustrate a particularly striking property of
these impurity modes even without the use of any par-
ticular theoretical model.

Without specifying at this point exactly what we mean
by universality (this will be done at the end of Sec. III),
we will say right now that exceptions have been ob-
served. In addition, an important point to be stressed is
that the same remarkable defect modes have also been
shown to exist in a large number of disordered crystals,
including at least one quasicrystal. These measurements
will also be reviewed. We shall reach the conclusion that
the absence of long-range order, which characterizes
amorphous solids, is neither sufficient nor necessary for
these excitations to exist.

II. EXAMPLES OF EXPERIMENTAL RESULTS

Before proceeding, we shall show a few examples of
the experimental observations to be reviewed. The char-

acteristic thermal conductivity of bulk amorphous di-
electric solids (including that of an amorphous metal in
its superconducting state) is shown in Fig. 1, taken from
Cahill and Pohl (1988a). Below !1 K, the thermal con-
ductivity varies nearly as the square of the temperature
(T2), and above !100 K it approaches a temperature-
independent value, called the minimum thermal conduc-
tivity, which has been reviewed previously (Medwick
and Pohl, 1997; Pohl, 1998). In the present review, we
concentrate on the temperature range below 1 K. Note
the two dashed lines in Fig. 1, which are connected by a
double arrow. They are proportional to T2 and indicate
the range spanned by practically all amorphous solids
measured to date, which will be reviewed here. The two
lines are spaced by a factor of 20, which we call the
‘‘glassy range,’’ and present the first example of the uni-
versality to be discussed.

As examples of acoustic attenuation, Fig. 2 shows the
internal friction Q!1 of amorphous solids, again includ-
ing an amorphous metal (this one in its normal state;
Topp and Cahill, 1996). Above 10 K, the internal friction
depends strongly on the chemical composition. Below
that temperature, it approaches a temperature-
independent value. The dropoff at the lowest tempera-
ture depends on the frequency of measurement, occur-
ring at lower temperatures as the measuring frequency
decreases, as is illustrated in Fig. 3. This dropoff can be
explained in the tunneling model, together with the pla-
teau (Jäckle, 1972). In this review, we shall concentrate
on the plateau and ignore measurements of acoustic at-
tenuation by resonant scattering, referring the reader to

FIG. 1. Thermal conductivity of several amorphous solids (Ca-
hill and Pohl, 1988a). The conductivities of all glasses mea-
sured to date below 1 K lie in the range spanned by the two
dashed straight lines shown here, separated by the double ar-
row, which we call the glassy range.

FIG. 2. Internal friction of several amorphous solids (Topp
and Cahill, 1996). Between 0.1 and 10 K, the internal friction is
nearly independent of temperature and measuring frequency.
Within this temperature range, the magnitude of the internal
friction for all glasses falls within about a factor of 20 as shown
here by the dashed straight lines and the double arrow, called
the glassy range, except for some a-Si films that are mentioned
later. For a discussion of the dropoff below !0.1 K, see the
text.

992 Pohl, Liu, and Thompson: Thermal conductivity and acoustic attenuation in amorphous solids

Rev. Mod. Phys., Vol. 74, No. 4, October 2002
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f 0‘!!0/2"!1 GHz. We evaluate sensing prospects for two
different model realizations of 1 GHz fundamental-mode,

doubly clamped beam resonators; these are summarized by

the parameters displayed in Table I. We use a damped,

simple harmonic oscillator model to describe the flexural

motion of the beam #here chosen as out-of plane, Fig. 1$ in
the vicinity of the fundamental resonance. For Q%10, this
provides an accurate description of the resonant response to

within 1%.20 In this model, the mechanical response for a

particular mode is approximated by that of a damped har-

monic oscillator with an effective mass M eff , a dynamic

stiffness #for point loading at the beam’s center$ &eff , and a
quality factor Q. All of these factors apply uniquely to the

specific mode considered. For the fundamental-mode

response of a simple doubly clamped beam, the effective

mass, dynamic stiffness, and the resonance frequency are

given as M eff!0.735ltw' , &eff!32Et
3w/l3, and !0

!2"(1.05)!E/'(t/l2), respectively.21 Here, l"t"w are

the beam’s dimensions, E is Young’s modulus, and ' is the
mass density of the beam. We have assumed the material is

isotropic; for single-crystal devices anisotropy in the elastic

constants will result in a resonance frequency that depends

upon specific crystallographic orientation.

In resonant sensing applications, one generally drives the

resonator to a predetermined amplitude and measures

amplitude22 or frequency15 shifts in the steady state upon

changing the resonator’s physical environment. To maximize

the signal-to-noise ratio #SNR$ one wishes to apply the larg-
est drive level tolerable. For the sake of concreteness, we

assume that this is the maximum rms level, (xc), still con-
sistent with producing a predominantly linear response.23 For

a doubly clamped beam, this can be roughly approximated as

(xc)*0.53t , which depends only upon the beam thickness in
the direction of vibration.24 Amore rigorous definition can be

established for the case of frequency-stiffening nonlinearity

induced by the Duffing instability for doublyclamped

beams.25,26

In the simple harmonic oscillator model, both the reso-

nator and the added #accreted$ mass +M are, to lowest order,

approximated as point masses. Interpreting real experiments

with this assumption involves consideration of additional

details,27 but these do not qualitatively alter the fundamental

picture that emerges.

In Sec. II of this article, we develop a detailed formalism

for obtaining the mass sensitivity of a nanomechanical reso-

nator. Mass sensitivity limits imposed by various frequency-

fluctuation processes in nanomechanical resonators are dis-

cussed. Numerical estimates are obtained for the two model

realizations of a 1 GHz nanomechanical doubly clamped

beam resonator #Table I$. In Sec. III, we evaluate these re-
sults and present our conclusions.

II. ANALYSIS

In general, resonant mass sensing is performed by care-

fully determining the resonance frequency !0 of the resona-

tor and then, by looking for a frequency shift +!0 in the

steady state due to the accreted mass. Assuming that this

added mass +M is a small fraction of the effective vibratory

resonator mass M eff , we can write a linearized expression

+M*
,M eff

,!0

+!0!R#1+!0 . #1$

This expression assumes that the modal quality factor and

compliance are not appreciably affected by the accreted spe-

cies. This is consistent with the aforementioned presumption

that +M$M eff . Hereafter, we shall refer to +M , as the mass
sensitivity or the minimum detectable mass of the system.

Apparently, +M critically depends on the minimum measur-

able frequency shift +!0 and the inverse mass responsivity

R#1.

Since the resonator’s compliance &eff for the employed
resonant mode—a function of the resonator’s elastic proper-

ties and geometry—is unaffected by small mass changes, we

can further determine that

R!
,!0

,M eff

!#
!0

2M eff

, #2$

and

+M*#2
M eff

!0

+!0 . #3$

We note that Eq. #3$ is analogous to the Sauerbrey

equation,28 but is instead here written in terms of the abso-

lute mass, rather than the mass density, of the accreted spe-

cies.

FIG. 1. Doubly clamped beam resonator with length l, width w, and thick-

ness t. Our illustrative analyses are based upon the fundamental-mode, out-

of-plane #z-directed$ flexural response of the beam.

TABLE I. Parameters for the two representative 1 GHz doubly clamped beams considered in this work.

w"t"l

#nm$
M eff!0.735wlt'

#g$
&eff

#N/m$
(xc)
#nm$

Ec!M eff!0
2(xc

2)
#J$

DR at 300 K

DR!10 log(Ec /kBT)
#dB$

50"80"780
Si beam

5.30" 10#15 -290 42 3.7" 10#13 -80

15"15"340
Si nanowire

1.30" 10#16 -6.73 8 3.5" 10#16 -50

2683J. Appl. Phys., Vol. 95, No. 5, 1 March 2004 Ekinci, Yang, and Roukes

Motivation: high Q ( low 
dissipation) is important!

Example 1: Resonant mass sensor ( Q will determine 
the minimum mass detectable) 

31

from Ekinci,et al., JAP (2004)

Si nanowire
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Motivation: high Q ( low 
dissipation) is important!

Example 2:  SQUIDs are used as qubits; need to reduce 
the noise. 

Charge noise is proportional to the dielectric loss 
tangent of substrate. 

32

Martinis,et al., PRL (2005)

junction

SiNx
Al

AlAl

Al2O3 

via

In glasses, at low temperature and low frequency, acoustic dissipation 
(phonons) and dielectric loss (photons) are all due to TLS.

S. Hunklinger, PLTP (1984)

TLSSubstrate
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Since dissipation is 
ubiquitous in glasses, 

can we reduce it?
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Anomalously low 
dissipation in Si3N4

34

alleviates film stress. In contrast, other processes [24]
produce high-stress nitride that dissolves in the HF wet
etch used to release the resonator.

In our laboratory we have shown that room temperature
mechanical measurements on high-stress nitride exhibit a
range of Q values depending on the geometrical configu-
ration and size of the structure [8,25]. We also demon-
strated that, in a given device, the mechanical distortion
(bending) of the handle wafer supporting a film of low-
stress silicon nitride led to the enhancement of the film’sQ
[26]. It is well known that metallization increases Q!1;
therefore, we developed a large scale nonmetallized struc-
ture to facilitate the optical detection of resonant motion at
low temperatures. The 110 nm-thick Si3N4 film was pat-
terned with a 50" 50 array of 0:8 !m holes spaced 5 !m
apart. The holes admit HF to etch away the underlying
630 nm sacrificial oxide layer, yielding a 255 !m"
255 !m freestanding resonator attached to the wafer
only around the periphery. The resonator’s average thick-
ness was reduced to #30 nm by the etch (estimate based
on an observed 14 nm=min Si3N4 HF etch rate). The
resonator is driven at its fundamental ‘‘drumhead’’ reso-
nant frequency [27] around 1.5 MHz using a piezodisc that
vibrates the chip in the out-of-plane direction. To elucidate
the role of stress on the dissipation, we also fabricated a
silicon nitride cantilever resonator, which, because it is
unsupported on three sides, has minimal included stress.
The membrane resonator, together with a stress-relieved
cantilever, is shown in Fig. 1.

The devices’ motion was detected optically [28] on a
modified Attocube cryostat [29] operated in vacuum.
785 nm laser light was coupled to a low temperature
objective lens via a single mode fiber and was reflected
from the resonator-substrate assembly, the light collected
and coupled to a photodiode connected to the input of a
swept frequency network analyzer. The device and sub-
strate comprise a Fabry-Perot interferometer. The motion
of the resonator modulates the intensity of the reflected
light. The resonant frequency f0 of the structures (dictated
by a combination of geometry, elastic properties of the

material, and temperature dependent stress) was used as an
internal thermometer to ensure that heating by the laser (or
drive) was not significant. Because the differential expan-
sion between the silicon handle wafer and the nitride
dominates changes in the resonant frequency, we do not
plot the temperature dependence here.
A single chip had identical resonators fabricated adja-

cent to one another. In a 3" 3 array, all resonators exhibit
Q!1 ’ 10!6 at room temperature with the exception of one
structure with a Q ( $ 104) possibly due to a crack. The Q
and f0 were obtained by fitting the response of the reso-
nator to a Lorentzian, and the Q was determined from the
half-power width, !f (Q ¼ f0=!f). The resonators were
driven at a small enough amplitude (estimated to be
$1 nm) to maintain a linear response (Lorentzian line
shape and negligible frequency shift with amplitude).
The response of membrane and cantilever resonators is
shown in Fig. 2.
The temperature dependence of the internal friction,

along with typical values observed for crystalline silicon
and amorphous SiO2 [6], is plotted in Fig. 3. At room
temperature the internal friction of the Si3N4 resonator is
lower than that measured for silicon double-paddle reso-
nators (solid red line in Fig. 3), but the approximately
2 orders of magnitude decrease in Q!1 of the Si as the
temperature is lowered is not observed in the glassy reso-
nator. The contrast with the behavior expected for glasses
is all the more striking with the high-stress nitride display-
ing a 3 orders of magnitude lower dissipation than SiO2.
The temperature dependent dissipation of the stress-

relieved cantilevers is plotted in Fig. 3 and is below the
band of values seen in glasses (blue bar) by approximately
a factor of 2. Thus, it is clear that the dissipation of the
LPCVD stress-relieved film is more consistent with typical
glassy behavior and is within an order of magnitude of
results reported by Liu et al. [6].
In order to verify that the silicon nitride material is

disordered, we examined an unreleased high-stress sample
grown in the same batch. X-ray diffraction scans taken
using a Scintag ID3000 spectrometer and general area
detector diffraction system (GADDS) show a broad flat
scattering region below 20&, the result of diffraction from
an amorphous material in contrast to peaks which would be

FIG. 1 (color online). Left: Image of a 255 !m" 255 !m"
30 nm thick silicon nitride resonator (the lighter region). Inset: A
corner with 40 of the 50" 50 0:8 !m diameter holes required to
etch away the underlying SiO2. Right: A stress-relieved cantile-
ver near a 255 !m square resonator. An identical structure at the
top is stuck to the underlying silicon and appears discolored.
Inset: An electron micrograph of a similar cantilever.

FIG. 2 (color online). The amplitude response (points) and
fits (solid lines) for a high-stress membrane (left, f0 ¼
1:526 445 MHz, Q ¼ 2:68" 106) at 4.76 K, and stress-relieved
cantilever resonator (right, f0 ¼ 3:538 700 MHz, Q ¼ 1:48"
104) at 4.7 K.
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produce high-stress nitride that dissolves in the HF wet
etch used to release the resonator.

In our laboratory we have shown that room temperature
mechanical measurements on high-stress nitride exhibit a
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only around the periphery. The resonator’s average thick-
ness was reduced to #30 nm by the etch (estimate based
on an observed 14 nm=min Si3N4 HF etch rate). The
resonator is driven at its fundamental ‘‘drumhead’’ reso-
nant frequency [27] around 1.5 MHz using a piezodisc that
vibrates the chip in the out-of-plane direction. To elucidate
the role of stress on the dissipation, we also fabricated a
silicon nitride cantilever resonator, which, because it is
unsupported on three sides, has minimal included stress.
The membrane resonator, together with a stress-relieved
cantilever, is shown in Fig. 1.

The devices’ motion was detected optically [28] on a
modified Attocube cryostat [29] operated in vacuum.
785 nm laser light was coupled to a low temperature
objective lens via a single mode fiber and was reflected
from the resonator-substrate assembly, the light collected
and coupled to a photodiode connected to the input of a
swept frequency network analyzer. The device and sub-
strate comprise a Fabry-Perot interferometer. The motion
of the resonator modulates the intensity of the reflected
light. The resonant frequency f0 of the structures (dictated
by a combination of geometry, elastic properties of the

material, and temperature dependent stress) was used as an
internal thermometer to ensure that heating by the laser (or
drive) was not significant. Because the differential expan-
sion between the silicon handle wafer and the nitride
dominates changes in the resonant frequency, we do not
plot the temperature dependence here.
A single chip had identical resonators fabricated adja-

cent to one another. In a 3" 3 array, all resonators exhibit
Q!1 ’ 10!6 at room temperature with the exception of one
structure with a Q ( $ 104) possibly due to a crack. The Q
and f0 were obtained by fitting the response of the reso-
nator to a Lorentzian, and the Q was determined from the
half-power width, !f (Q ¼ f0=!f). The resonators were
driven at a small enough amplitude (estimated to be
$1 nm) to maintain a linear response (Lorentzian line
shape and negligible frequency shift with amplitude).
The response of membrane and cantilever resonators is
shown in Fig. 2.
The temperature dependence of the internal friction,

along with typical values observed for crystalline silicon
and amorphous SiO2 [6], is plotted in Fig. 3. At room
temperature the internal friction of the Si3N4 resonator is
lower than that measured for silicon double-paddle reso-
nators (solid red line in Fig. 3), but the approximately
2 orders of magnitude decrease in Q!1 of the Si as the
temperature is lowered is not observed in the glassy reso-
nator. The contrast with the behavior expected for glasses
is all the more striking with the high-stress nitride display-
ing a 3 orders of magnitude lower dissipation than SiO2.
The temperature dependent dissipation of the stress-

relieved cantilevers is plotted in Fig. 3 and is below the
band of values seen in glasses (blue bar) by approximately
a factor of 2. Thus, it is clear that the dissipation of the
LPCVD stress-relieved film is more consistent with typical
glassy behavior and is within an order of magnitude of
results reported by Liu et al. [6].
In order to verify that the silicon nitride material is

disordered, we examined an unreleased high-stress sample
grown in the same batch. X-ray diffraction scans taken
using a Scintag ID3000 spectrometer and general area
detector diffraction system (GADDS) show a broad flat
scattering region below 20&, the result of diffraction from
an amorphous material in contrast to peaks which would be

FIG. 1 (color online). Left: Image of a 255 !m" 255 !m"
30 nm thick silicon nitride resonator (the lighter region). Inset: A
corner with 40 of the 50" 50 0:8 !m diameter holes required to
etch away the underlying SiO2. Right: A stress-relieved cantile-
ver near a 255 !m square resonator. An identical structure at the
top is stuck to the underlying silicon and appears discolored.
Inset: An electron micrograph of a similar cantilever.

FIG. 2 (color online). The amplitude response (points) and
fits (solid lines) for a high-stress membrane (left, f0 ¼
1:526 445 MHz, Q ¼ 2:68" 106) at 4.76 K, and stress-relieved
cantilever resonator (right, f0 ¼ 3:538 700 MHz, Q ¼ 1:48"
104) at 4.7 K.
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characteristic of crystalline order. We also obtained TEM
images of our Si3N4=SiO2=Si composite structure. These
reveal no long-range order: while the lattice in the
Si (wafer) is clearly revealed, no such structure is seen
from the images captured from the SiO2 or Si3N4 (Fig. 4).
This conclusion is supported by conventional e-beam dif-
fraction and convergent beam electron diffraction (CBED).
We conclude that the high-stress Si3N4 is not crystalline.

According to the tunneling model, the internal friction
Q!1 of glasses in the plateau region is given by [5]

Q!1 ¼ !

2

!P"2

#$2 : (1)

!P is the spectral density of tunneling states, " is the
coupling energy of the tunneling states to the lattice, # is
the mass density, and $ the sound velocity. This expression
(and the TM) are strictly applicable below 1 K where
thermally activated reorientations of the tunneling entities
are negligible. Nevertheless, it is a general experimental
observation that the ‘‘plateau’’ extends to 5 K for a wide
range of materials and frequencies [30].

It is clear from our results that stress and not hydrogen
content is the origin of the anomalously low Q!1 that we
observe in high-stress silicon nitride. Liu and coauthors
observed a much lower dissipation in HWCVD a-Si than in

e-beam deposited a-Si and Siþ implanted a-Si [5] and
attributed this difference to the hydrogen incorporated in
the a-Si films by the HWCVD process. This added hydro-
gen results in a Q!1 comparable to those seen in our high-
stress silicon nitride resonators. It was conjectured that the
hydrogen might lead to the formation of an amorphous
network with more perfect fourfold coordination [5]. As
noted in one of the original tunneling model papers, the
high coordination number that accompanies tetrahedral
bonding is expected to inhibit the tunneling process, thus
decreasing the density of tunneling states [3]. However,
fourfold coordination does not guarantee low Q!1 [31].
Silicon nitride also has fourfold coordination and is a
candidate for a correspondingly lower dissipation at the
plateau. We compare resonators fabricated from identical
films, with similar chemical composition [32] and coordi-
nation number, with stress being the sole distinguishing
factor. Thus hydrogen or coordination number alone can-
not be responsible for the anomalously low dissipation
observed in the high-stress material. Regardless of the
origin, one comes to the conclusion that either the spectral
density !P or the coupling energy " must be radically
altered by the application of stress.
We offer the following conjectures that would have to be

tested. We note that all of the films considered here (in our
lab and elsewhere) range from 30 nm to 2 %m thick; thus
they have enhanced surface to volume ratios compared to
conventional macroscopic resonators. At first sight, the
quasi-two-dimensional nature of the structures should be
important since the availability of nearby sites for tunnel-
ing would be different for surface atoms. Yet it was shown
in [33] that theQ!1 plateau levels in a-SiO2 films as thin as
0.75 nm are nearly the same as in bulk a-SiO2 (while Q

!1

at T > 10 Kwas modified from bulk). So surfaces alone do
not alter Q!1. An understanding of the effect of stress
could come from two-site models where it is thought that
most of the tunneling entities reside on internal surfaces
(nanovoids) in the glass [34,35]. Such nanovoids’ contours
might be more distorted by stress, affecting the tunneling
between nearby sites.
The second conjecture relates to the significant depar-

tures from the accepted ‘‘universal’’ behavior seen by Liu
and co-workers [5,6] in thin film materials deposited onto a

FIG. 4. Top: High resolution TEM images showing no long-
range order in the SiO2 or Si3N4 in contrast to the Si lattice.

FIG. 3 (color). Temperature dependent internal friction mea-
sured for our high-stress LPCVD Si3N4 membrane structures.
This is contrasted with the behavior of a-SiO2 (solid blue line)
and single crystal Si (solid red line) [5]. The range of ‘‘plateau’’
region values of Q!1 for a-SiO2 is shown by the blue bar. We
also show for comparison results for e-beam deposited a-Si [5]
and supported LPCVD films of SiN [6]. Our data on cantilever
structures fabricated from the same LPCVD film as the high Q
membranes show Q!1 a factor of $2 below the lower extent of
the band consistent with other glassy materials.
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Two questions to 
answer

Why does high stress reduce 
dissipation of Si3N4 so 
dramatically ?
Why does stress-relieved Si3N4 
have an order of magnitude 
lower in dissipation than  SiO2 ?
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 Why does high stress reduce the 
dissipation in glasses ?

Answer: 
Relaxation via tunneling and thermal 

activation is exponentially sensitive to V.
High stress increases the barrier heights 

V, effectively reducing the number of 
defects that produce dissipation. 
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Theory of dissipation in 
glasses

37

Dissipation and thermal conductivity 
are all related to the mean free path of phonons 

(photons)

 

Q−1 =
λ
MFP

phonon 
wave length
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Four mechanisms contribute to 
the dissipation

38

 
QResonance

−1
 10−7

 
QRayleigh

−1
 10−18

Only involved at high T

 
QRelaxation

−1
 10−3

Therefore, relaxation dominates

0.1K < T < 10K  ω  1 MHz
Resonant scattering of phonons from TLS

TLS relaxation

Rayleigh scattering

Scattering from Einstein oscillators

√
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Dissipation due to TLS 
relaxation

39

 

QRelaxation
−1 =

2Q0
−1

π
dV∫ dΔP(Δ,V )

0

2V

∫ sech2 ω
2kBT

⎛
⎝⎜

⎞
⎠⎟

Δ
E

⎛
⎝⎜

⎞
⎠⎟
2 ωτ
1+ (ωτ )2

22

Tunneling 

Thermal activation

τ −1 = τTunneling
−1 + τThermal Activation

−1

 

τTunneling
−1 = AΔ0

2E coth ω
2kBT

⎛
⎝⎜

⎞
⎠⎟

τThermal Activation
−1 = τ 0

−1 cosh Δ
2kBT

⎛
⎝⎜

⎞
⎠⎟
e
−V 2kBT

P(Δ,V ) = P
−

E0
e
−(V −V0 )

2

2σ0
2

Gaussian distribution 
of barrier heights V

Relaxation time

 
Δ0 =ω0e

−
2mVd


Monday, September 20, 2010



Dissipation at low 
temperature 

40

S. Hunklinger, PRB (1992)

Thermal 
activation

Tunneling 

E0

Q0
−1 ≈

π Pγ 2

2ρv2
e
−
V0
2

2σ0
2

Universal

a-SiO2
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Why low stress Si3N4 has low dissipation 
compared with SiO2 ?

41

a-SiO2 Si3N4

3- or 4-fold 
coordinated materials 

will have extra 
constraints, producing 

non-relieved strain 
energy, thus 

increasing the barrier 
heights. V0 is nonzero 

compared to a-SiO2 V0 = 0K
σ 0 = 445K

V0 = 13500K
σ 0 = 9000KP(Δ,V ) = P

−

E0
e
−(V −V0 )

2

2σ0
2
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Why high stress can reduce 
dissipation in glasses ? 

42

High stress increases the 
strain energy, thus 

increasing the barrier 
heights. V0 is increased 

compared with low stress 
Si3N4
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Dissipation of Si3N4 
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a-SiO2: from  Yu and Freeman, RPB (1987)
Si3N4: Queen, et al.,RSI (2009) 
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Conclusion

Universal properties of glasses, such as dissipation, 
specific heat, and thermal conductivity can be well 
described by a two level system and Einstein 
oscillator model.

Glasses made of 3- or 4-fold coordinated materials 
and glasses in the presence of  high stress can have 
very low dissipation.  

High stress increases barrier heights of defects, 
effectively reducing the number of defects 
producing dissipation.
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