

THE DARK ENERGY SURVEY

H0 Tension from the viewpoint of the Dark Energy Survey

Dillon Brout 2019 Einstein Fellow Univ. of Pennsylvania

KITP Tensions between the Early and the Late Universe July 17th 2019

THE DARK ENERGY SURVEY

DECam 570 Megapixels

5000 Sq Degree Wide Survey

30 Sq Degree Transient Survey

DES 2013-2019 (758 nights)

>25,000 Transients

DR1: 300M galaxies, 39k exposures

www.darkenergysurvey.org

570 Megapixels

5000 Sq Degree Wide Survey

30 Sq Degree Transient Survey

DES 2013-2019 (758 nights)

>25,000 Transients

DR1: 300M galaxies, 39k exposures

570 Megapixels

5000 Sq Degree Wide Survey

30 Sq Degree Transient Survey

DES 2013-2019 (758 nights)

>25,000 Transients

DR1: 300M galaxies, 39k exp

DES Probes

Have contributed to the discussion in many ways.

Supernovae la

Weak Lensing

BAO

Strong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Supernovae la

Weak Lensing

BAO

Strong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration?
- Other SN Systematics?
- BAO Systematics?

Supernovae la

Weak Lensing

BAO

Strong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration?
- Other SN Systematics?
- BAO Systematics?

Strong Lensing Statistics

Supernovae la

Weak Lensing

BAO

Strong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration?
- Other SN Systematics?
- BAO Systematics?

Strong Lensing Statistics

Standard/Dark Sirens

Supernovae la

Weak Lensing

BAO

Strong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration?
- Other SN Systematics?
- BAO Systematics?

Strong Lensing Statistics

Standard/Dark Sirens

Cosmological Model Dependence

- Physics at z>~1000
- Physics at ~1<z<~1000
- Physics at low redshift

Supernovae la

Weak Lensing

BAO

Strong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration?
- Other SN Systematics?
- BAO Systematics?

Strong Lensing Statistics

Standard/Dark Sirens

Cosmological Model Dependence

- Physics at z>~1000
- Physics at ~1<z<~1000
- Physics at low redshift

Consistency with Planck

- **-** \$8
- Sound Horizon

Supernovae la

Weak Lensing

BAO

Strong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration?
- Other SN Systematics?
- BAO Systematics?

Strong Lensing Statistics

Standard/Dark Sirens

Cosmological Model Depende

- Physics at z>~1000
- Physics at ~1<z<~1000
- Physics at low redshift

1.10 SDSS MGS WiggleZ eBOSS quasars 1.00 BOSS Lya 0.90 0.00 0.5 1.00 1.5 2.0 2.5

Redshift

DES Collaboration 2018

Supernovae la

eak Lensing

BAO

ong Lensing

Consistency with Planck

- **-** \$8
- Sound Horizon

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration?
- Other SN Systematics?
- BAO Systematics?

Strong Lensing Statistics

Standard/Dark Sirens

- Physics at z>~1000
- Physics at ~1<z<~1000
- Physics at low redshift

Consistency with Planck

- **-** \$8
- Sound Horizon

Supernovae la

eak Lensing

BAO

ong Lensing

DES Probes

Have contributed to the discussion in many ways.

Distance Ladder

- SN Host Environments
- Selection Effects

Inverse Distance Ladder:

- SN Absolute Calibration:
- Other SN Systematics?
- BAO Systematics?

Strong Lensing Statistics

Standard/Dark Sirens

Cosmological Model Depend

- Physics at z>~1000
- Physics at ~1<z<~1000
- Physics at low redshift

Supernovae la

Weak Lensing

Strong Lensing

Consistency with Planck

- **-** \$8
- Sound Horizon

Supernovae

Weak Lensing & Clustering + BAO + BBN

H0 from the Co-Discovery of GW170817

Landscape of High Redshift Rolling SN Surveys

Landscape of High Redshift Rolling SN Surveys

How Do DES SNe Stack Up?

DES-SN3YR Results!

Flat wCDM

DES Collaboration et al. 2018

[†] Sources of systematic uncertainty that have not been included in previous analyses.

DES-SN3YR Results!

Flat w₀w_aCDM

$$w = w_0 + w_a(1 - a)$$

$$w_a = -0.387 \pm 0.430$$

The most powerful constraint on dark energy per SN to date

DES Only Results From Combined Probes

First single photometric probe to independently rule out a no dark energy universe.

$$w = -0.80^{+0.09}_{-0.11}$$

DES-SN + Planck16

$$w = -0.911 \pm 0.087$$

Calibration of SN Surveys

DES has made an independent crosscheck of the SuperCal calibration used in Pantheon/SHOES

SN Ia: m-M (mag)

Riess et al

Here PS1 also = Foundation

The Host Mass Step is not seen in DES

The Host Mass Step is not seen in DES

The Host Mass Step is not seen in DES

We do see correlations with c, x₁

Removing/reducing the correction made in SH0ES would raise H0

DES Supernova Inverse Distance Ladder H0 Technique

Breaks degeneracy with peak intrinsic and H_o

Minimal assumptions about the underlying cosmological model.

Polynomial cosmographic model.

Gaussian prior on $r_s = 147 +- 1$

Ho = 67.77 + -1.30 km/s/Mpc

First done by Aubourg et al. 2015 with Pantheon: Feeney et al. 2018

DES Supernova Inverse Distance Ladder H0 Technique

Description	H_0 shift	$\sigma_{ m syst}$	$\sigma_{ m syst}$ / $\sigma_{ m stat}$
Total Stat.	0.000	1.048	1.00
Total Sys.	0.162	0.760	0.72
ALL Calibration	-0.078	0.375	0.36
DES Cal.	-0.016	0.276	0.26
Low-z Cal	-0.026	0.254	0.24
SALT	0.053	0.217	0.21
ALL Other	0.004	0.661	0.63
Intrinsic Scatter	0.129	0.330	0.31
z + 0.00004	0.036	0.083	0.08
c, x_1 Parent Pop.	-0.031	0.249	0.24
Low-z Vol. Lim.	-0.081	0.124	0.12
Flux Err.	-0.004	0.179	0.17
Spec. Eff	-0.091	0.125	0.12
Ref. Cosmo.	-0.065	0.134	0.13
Low-z 3σ Cut	0.498	0.193	0.18
Sys. Parent	0.370	0.222	0.21
PS1 Coherent Shift	0.064	0.246	0.23
$2~\sigma_{ m int}$	-0.068	0.231	0.22

First done by Aubourg et al. 2015 with Pantheon: Feeney et al. 2018

Supernovae

Weak Lensing & Clustering + BAO + BBN

H0 from the Co-Discovery of GW170817

flat ΛCDM

DES Weak Lensing & Clustering + BAO +BBN

BAO Observable

$$D_{\rm M}/r_{\rm s} \leftarrow \Omega_{\rm m}, \, \Omega_{\rm b}h^2, \, {\rm and} \, h.$$

DES Weak Lensing Contribution to the H0 Discussion

Low H0 independent of Planck!

DES Weak Lensing Contribution to the H0 Discussion

Low H0 independent of Planck!

Effective to swapping out Lya BAO to break degeneracy with OM

Addison et al 2018

Supernovae

Weak Lensing & Clustering + BAO + BBN

H0 from the Co-Discovery of GW170817

LIGO

DISCOVERY OF THE OPTICAL COUNTERPART OF GW170817 WITH DECAM

GW170817 DECam observation (0.5-1.5 days post merger)

Soares-Santos et al 2017

DES-GW

Marcelle Soares Santos

3

10

days since event

LIGO

Re: All Eyes! G298048. Images will be downloadable

Ryan Chornock sent by owner-des-gw@listserv.fnal.gov

Sent: Thursday, August 17, 2017 at 7:42 PM

To: Sahar Allam; Berger, Edo; Douglas L Tucker

Cc: Philip S. Cowperthwaite; Dillon Brout; Marcelle Soares Santos; Dan Scolnic;

2: decam_38.jpg (139.6 KB); ps1-3pi.jpg (23.6 KB) Preview All

GW170817 DECam obs (0.5–1.5 day Holy shit.

Check out NGC 4993 in DECam_00668440.fits.fz[N5]

Attached is tonight's image + ps1-3pi.

Galaxy is at 40 Mpc.

-R

DES-GW

Soares-S

The First Standard Siren

A gravitational-wave standard siren measurement of the Hubble constant

The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration

Nature 551, 85–88 (02 November 2017) | doi:10.1038/nature24471

Precision of this LIGO distance estimate is limited by the peculiar velocity and by the degeneracy with inclination of the system.

LIGO Distance Estimates Degeneracies Broken By Kilonova Modeling

H0 From LIGO, DES, and KN Modeling

Show preference for 15deg opening (blue)

All modeling shows preference for off axis viewing

Off axis viewing leads to lower estimates of distance -> higher Ho

Summary: The future of DECam is exciting!

Kilonovae:

Last season's event was close and bright, the majority of future events will be further & fainter. DECam remains the most powerful Kilonova discovery tool in the southern hemisphere.

Potentially a few more this year with doubling of LIGO sensitivity.

Supernovae:

DES 5 Year Dataset of ~2500 Type Ia SNe will double all currently available SN.

A strong tool to study SN environment dependencies and physics.

Other Probes:

DES 3YR WL, Clusters, BAO, coming "soon"

Thank You

