Weak lensing and tensions in ACDM

Hendrik Hildebrandt - Ruhr-University Bochum

Cosmic shear

Sensitive to:

- Matter distribution
- Geometry

Observables:

- Ellipticities
- Photo-z

Statistical measurement of many galaxies

Wittman et al. (2000)

$$\xi_{\pm}(\theta) = \langle \gamma_{t} \gamma_{t} \rangle (\theta) \pm \langle \gamma_{x} \gamma_{x} \rangle (\theta)$$

$$\xi_{\pm}(\theta) = \langle \gamma_{t} \gamma_{t} \rangle (\theta) \pm \langle \gamma_{x} \gamma_{x} \rangle (\theta)$$

$$\xi_{+}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell \,\ell}{2\pi} \, J_{0}(\ell\theta) \, P_{\kappa}(\ell) \; ; \quad \xi_{-}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell \,\ell}{2\pi} \, J_{4}(\ell\theta) \, P_{\kappa}(\ell)$$

$$P_{\kappa}(\ell) = \frac{9H_0^4 \Omega_{\rm m}^2}{4c^4} \int_0^{\chi_{\rm h}} d\chi \, \frac{g^2(\chi)}{a^2(\chi)} \, P_{\delta} \left(\frac{\ell}{f_K(\chi)}, \chi \right)$$

$$g(\chi) = \int_{\chi}^{\chi_h} d\chi' \ p_{\chi}(\chi') \frac{f_K(\chi' - \chi)}{f_K(\chi')}$$

$$\xi_{\pm}(\theta) = \langle \gamma_{t} \gamma_{t} \rangle (\theta) \pm \langle \gamma_{x} \gamma_{x} \rangle (\theta)$$

$$\xi_{+}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell \,\ell}{2\pi} \, J_{0}(\ell\theta) \, P_{\kappa}(\ell) \; ; \quad \xi_{-}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell \,\ell}{2\pi} \, J_{4}(\ell\theta) \, P_{\kappa}(\ell)$$

$$P_{\kappa}(\ell) = \frac{9H_0^4 \Omega_{\rm m}^2}{4c^4} \int_0^{\chi_{\rm h}} d\chi \, \frac{g^2(\chi)}{a^2(\chi)} P_{\delta} \left(\frac{\ell}{f_K(\chi)}, \chi \right)$$

$$g(\chi) = \int_{\chi}^{\chi_h} d\chi' \ p_{\chi}(\chi') \frac{f_K(\chi' - \chi)}{f_K(\chi')}$$

$$\xi_{\pm}(\theta) = \langle \gamma_{t} \gamma_{t} \rangle (\theta) \pm \langle \gamma_{x} \gamma_{x} \rangle (\theta)$$

$$\xi_{+}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell \,\ell}{2\pi} \, J_{0}(\ell\theta) \, P_{\kappa}(\ell) \; ; \quad \xi_{-}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell \,\ell}{2\pi} \, J_{4}(\ell\theta) \, P_{\kappa}(\ell)$$

$$P_{\kappa}(\ell) = \frac{9H_0^4 \Omega_{\rm m}^2}{4c^4} \int_0^{\chi_{\rm h}} d\chi \, \frac{g^2(\chi)}{a^2(\chi)} P_{\delta} \left(\frac{\ell}{f_K(\chi)}, \chi \right)$$

$$g(\chi) = \int_{\chi}^{\chi_h} d\chi' (p_{\chi}(\chi')) \frac{f_K(\chi' - \chi)}{f_K(\chi')}$$

Cosmic shear systematics

- 1. Shape measurements
- 2. Redshift estimates
- 3. Intrinsic alignments
- 4. Baryon feedback

1. Shape measurements

- Measure ellipticity and correct for PSF on pristine pixel data through
 - Brightness moments
- $\xrightarrow{}$

- Model fitting
- Calibrate biases (noise bias, model bias) to ~1% (0.1%) with
 - Image simulations, machine learning
 - Shearing of the images/models (Metacalibration)
- Check for residual biases via
 - Star-galaxy cross correlation functions
 - B-mode tests

2pt shear correlation functions

2. Redshift calibration

- Re-weight spec-z surveys to be more representative.
- Magnitude space needs to be fully covered.
- Requires unique relation colour-redshift relation.
- Requires extremely reliable spec-z.

2. Redshift distributions

z

3. Intrinsic alignments

 Z_i

$$F(z) = -A_{\rm IA} C_1 \rho_{\rm crit} \frac{\Omega_{\rm m}}{D_+(z)} \left(\frac{1+z}{1+z_0}\right)^{\eta} \left(\frac{\bar{L}}{L_0}\right)^{\beta}$$

3. Intrinsic alignments

$$F(z) = -A_{\rm IA} O_1 \rho_{\rm crit} \frac{\Omega_{\rm m}}{D_+(z)} \left(\frac{1+z}{1+z_0}\right)^{\eta} \left(\frac{\bar{L}}{L_0}\right)^{\beta}$$

4. Baryon feedback

DES-Y1

DES: 1/3 of the data, half depth KiDS-450: 1/3 of the data, full depth, optical-only

Troxel et al. (2018)

HSC-DR1

HSC: 1/10 of the data, full depth

KiDS-VIKING-450

KV450: 1/3 of the data, full depth, optical+IR

Hildebrandt et al. (2018)

Spectroscopic calibration of DES-Y1

Joudaki et al. (2019), arXiv:1906.09262

Caveat: Re-weighting done in 4D only.

S₈ constraints

KV450 and DES-Y1 combined

Problems with the redshifts

- Calibration with photo-z (e.g. COSMOS-2015):
 - Outliers => underestimate <z>
 - Bias => underestimate <z>
- Calibration with spec-z:
 - Magnitude-space coverage => underestimate <z>
 - Uniqueness of colour-redshift relation => underestimate <z>
 - Wrong spec-z => <z> drawn to the mean of all spec-z
- Clustering redshifts:
 - Evolving galaxy bias
 - Magnification effects

Summary & Outlook

- Mild ~2.5σ tension in S₈ between Planck and low-z WL measurements (KV450, DES-Y1 recalibrated).
- Systematics? Redshift calibration?
- Other LSS probes show similar discrepancies. Related to H_0 crisis? Serious problem for Λ CDM?
- Exciting times: KiDS+VIKING and DES finished;
 all 3 stage-III surveys analysing more data now.
- Prepare with today's data for Euclid/LSST.