Standard sirens and H_0

Daniel Holz University of Chicago

LIGO/Sonoma State University/A. Simonnet

What is a gravitational-wave standard siren?

- Black holes are the simplest macroscopic objects in the Universe
- Binary coalescence is understood from first principles; provides direct absolute measurement of luminosity distance (Schutz 1986)
- Distance calibration provided by General Relativity

Calibration is provided by General Relativity

GW waveform can be derived

- Quadrupole formula for GW emission + Kepler's Laws + Energy Conservation
- Frequency evolution provides fundamental scale of the binary, called the chirp mass:

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5}$$

Calibration is provided by General Relativity

- Strongest harmonic (widely separated): $h(t) = \frac{M_z^{5/3} f(t)^{2/3}}{D_L} F(\text{angles}) \cos(\Phi(t))$
- = dimensionless strain h(t)
- = luminosity distance D_L
- = accumulated GW phase $\Phi(t)$
- = GW frequency $f(t) = (1/2\pi)d\Phi/dt$
- = position & orientation dependence F(angles)
- (redshifted) chirp mass:

 $M_z = (1+z)(m_1m_2)^{3/5}/(m_1+m_2)^{1/5}$

What is a gravitational-wave standard siren?

- Black holes are the simplest macroscopic objects in the Universe
- Binary coalescence is understood from first principles; provides direct absolute measurement of luminosity distance (Schutz 1986)
- Distance calibration provided by General Relativity
- Need independent measurement of redshift to do cosmology*

Proposals to use mass distribution, EOS, etc. Finn 1996; Taylor, Gair, & Mandel 2012; Messenger & Read 2012; Del Pozzo, Li, & Messenger 2017

Two standard siren approaches

Counterpart/Bright

Statistical/Dark

Unique host galaxy

Use all galaxies in localization volume

Two standard siren approaches

Counterpart/Bright

Unique host galaxy

- Gravitational waves provide distance and photons provide redshift
- Pros: clean and direct way to put a point on the luminosity distance-redshift curve
- Cons: need an EM counterpart and associated redshift

DH & Hughes 2005; Dalal, DH, Hughes, & Jain 2006; Nissanke, DH+ 2010, 2013; Kasliwal & Nissanke 2014

GW170817 is an ideal standard siren

- ► GW170817 was detected in gravitational waves
 - Very high SNR
 - Excellent measurement of distance
- GW170817 had an optical counterpart
 - Host galaxy is NGC 4993
 - Measurement of redshift
- Poster child for the standard siren method....

Caveat: GW17081 is too good!

 Host galaxy is so close (40 Mpc) that peculiar motions are important

 NGC 4993 belongs to a group of galaxies with center-of-mass velocity 3327 ± 72 km/s in the CMB frame (Crook+ 2007)

Correct for coherent bulk flow of
 310 ± 150 km/s (Springob+ 2014)

GW170817 DECam observation (0.5–1.5 days post merger)

Standard siren measurement of the Hubble constant

 $H_0 = 70.0^{+12}_{-8} \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

Distance is correlated with inclination

If you know inclination, can improve measurement of cosmology
 If you know cosmology, can improve measurement of inclination

If you know cosmology, can improve inclination

Abbott+ 2017; Mandel 2018; Finstad+ 2018

Alternatively, if you know distance, can improve inclination (e.g., using surface brightness fluctuations: Cantiello, Jensen, Blakeslee,..,DH+ 2018 ApJL)

If you know inclination, can improve cosmology

Guidorzi, Margutti, Brout, Scolnic, Fong+ 2017 ApJL

Using radio and X-ray data to model the jet

If you know inclination, can improve cosmology

Hotokezaka+ 2018 based on radio observations from Mooley+ 2018

Two standard siren approaches

Counterpart/Bright

Statistical/Dark

Unique host galaxy

Use all galaxies in localization volume

Two standard siren approaches

"Schutz method" (Schutz 1986)

- If you can't identify the unique host galaxy, then use all galaxies in the 3D localization volume
- Pros: can be done for all GW sources, including BBH mergers
- Cons: there are many, many galaxies in the Universe

Schutz 1986; Macleod & Hogan 2008; Del Pozzo 2012

Statistical/Dark

Use all galaxies in localization volume

GW170817 as a dark standard siren

- GW170817 was only ~40 Mpc away!
- GW170817 was localized to 16 deg² on the sky
- GW170817 localization volume was relatively small: 215 Mpc³ (90% confidence region)
- Have catalog of ~400 galaxies in the localization volume (GLADE catalog; Dálya+ 2018)

GW170817 as a dark standard siren

 Most of the galaxies in the GW170817 localization volume are found in a single galaxy group (including NGC 4993)

GW170817 as a dark standard siren

- Apply statistical standard siren method to GW170817
 - Ignore the electromagnetic counterpart and associated host galaxy
 - Instead, consider every galaxy in localization volume as a potential host, calculate H₀ for each one, and combine

GW170814 as a dark standard siren

- GW170814 was first "triple" binary black hole: Hanford, Livingston, and Virgo detectors help constrain localization volume
- ▶ GW170814 localization volume was relatively small: 2x10⁶ Mpc³
- No electromagnetic counterpart
- GW170814 happens to fall in the middle of the DES footprint!
- Get a uniformly sampled, relatively deep catalog "for free"
- Use galaxy catalog plus gravitational-wave distances to infer posteriors for the Hubble constant
- 77,000 galaxies in the localization region

GW170814 as a dark standard siren

Lots of subtleties:

- What constitutes a galaxy? Do dwarf galaxies count?
- How deep is the catalog? Completeness corrections
- Weight galaxies? By stellar mass? Star formation? Metallicity? Something else?
- Spectroscopic or photometric redshifts? For photometric redshifts, significant systematic errors
- Role of large-scale structure
- Role of priors

GW170814 as a dark standard siren

$$H_0 = 75^{+40}_{-32} \text{ km s}^{-1} \text{ Mpc}^{-1}$$

What if general relativity is wrong?

- Can use standard sirens to measure breakdown of GR (Nishizawa 2017; Belgacem+ 2017; Amendola+ 2017; Linder 2018)
- If gravitational wave and electromagnetic distances disagree could be signs of:

- Extra spacetime dimensions
 (Pardo, Fishbach, DH, & Spergel 2018)
- Running of the Planck constant (Lagos, Fishbach, Landry, & DH 2019)

Simulations of standard siren convergence

- Mock binary neutron star events from "First Two Years" dataset (Singer, Chen, DH+ 2014)
- Inject events into MICE mock galaxy catalog (Crocce+ 2015)

What will the future bring?

What will the future bring?

Precision standard siren cosmology

Wätthistinel/Jearlatidensigerererensitgikrltyv(steatinder~260/238)/witedgebtehin/21.5%
Alelaougehnteleterfateentaukyboheoce, restentone is much worse

H_0 to 2% by 2023, 1% by 2026*

*convergence may be slower if low detection rate or missing BNS counterparts

What will the future bring?

- Additional measurements lead to improved H₀
 constraints (Dalal, DH, Hughes, & Jain 2006; Nissanke, DH+
 2010, 2013; Chen, Fishbach, & DH 2018; Feeney+ 2018)
 - > N counterpart standard siren events converge as ~ $15 \% / \sqrt{N}$
 - > N statistical standard siren events converge as $\sim 40\,\%/\sqrt{N}$
- Surprises? BBH counterparts? Lots of NSBHs?
- LISA!
- Cosmic Explorer? Einstein Telescope?

Cosmic Explorer

- Detect all binary mergers in the Universe?
- Counterparts for a small fraction provide full expansion history
- 20 years away?

Standard siren systematics

- Distance ladder
- Calibration of "standard"
- Extinction
- Metallicity
- Crowding

. . .

- Low-I versus high-I
- Line-of-sight large-scale structure

Standard siren systematics

- Peculiar velocities (should become negligible soon)
- Model selection (priors over GW population impact final results [e.g. rate evolution, mass distribution])
- Inclination distribution (can be fit out)
- EM constraints on inclination (only if EM constraints are used)
- Statistical standard sirens: Galaxy mis-identification? Galaxy catalog incompleteness? Redshift systematics?
- Failure of general relativity?
- Absolute calibration of GW detectors: amplitude response as a function of frequency
 - 1% measurement of H₀ requires 1% calibration of amplitude response

Photon calibrator

- Shine calibrated laser onto test masses. Use known radiation pressure to measure response of instrument at different frequencies
- Errors dominated by uncertainty in power of reference laser
- Current: ~5%
- ► Future: <1%

Parameter	Relative Uncertainty
Laser Power $[\mathcal{P}]$	0.57%
Angle $[\cos\theta]$	0.07%
Mass of test mass $[M]$	0.005%
Rotation $[(\vec{a} \cdot \vec{b})M/I]$	0.40%
Overall	0.75%

Karki+ 2016; Cahillane+ 2017

Newtonian calibrator

- Spin a dumbbell near the test masses. Alternating gravitational "force" on test masses calibrates response of instrument
- In initial development at Virgo
- non-gravitational coupling?
- Current: <10%</p>
- Future: <1%?</p>

Estevez+ 2018

Use GW170817 to calibrate LIGO!

- If we assume general relativity is correct, then the waveform of a binary merger is known from first principles
 - Phase and amplitude evolution are fixed by general relativity
 - Absolute amplitude calibration is not fixed: degenerate with distance

From GW170817:

Essick & DH 2019

- relative amplitude calibration to approximately ± 20%
- relative phase calibration to approximately ± 15%

The future is loud and bright

- Standard sirens provide a self-calibrated, absolute, and direct measurement of the Hubble constant
- With GW170817 and GW170814 we have established that the method works
- It is now just a matter of time before standard sirens provide precision cosmological constraints

