The Role of Supernova Host Galaxies in Understanding the Hubble Tension

David Jones Moore Fellow, UC Santa Cruz and the SHOES team

July 17, 2019

Measuring H₀ from the Distance Ladder Step 2: Cepheids in galaxies with SNe Ia

19 galaxies, and the next SH0ES analysis will have 38 HST Prop 15145,15640 (PI: Riess)

Riess+16

Measuring H₀ from the Distance Ladder Step 3: SNe Ia in the Hubble Flow

Type Ia Supernovae \rightarrow redshift(z) μ (z,H₀=73.2,q₀,j₀) 0.4 mag 0.0 -0.4 34 36 38 SN Ia: m-M (mag)

~200 SNe, and we're working on getting that number to 800 (Foundation; Foley+18)

Everything together

This measurement would have to be off by ~0.18 mag to account for the H₀ tension!

Riess+16

The Role of Supernova Host Galaxies

- Two steps on the ladder depend on SN Ia distances, and observational biases are in play
 - SN Ia must be in star-forming galaxies to be calibrated by Cepheids

The Role of Supernova Host Galaxies

Distances inferred from SN Ia appear to depend on their host galaxy mass (+/-0.03 mag) and we don't know why

Kelly+10, Lampeitl+10, figure from Sullivan+10

The Relationship Between SN Ia and their Host Galaxies

- We correct for host mass step, but what if the host mass dependence is tracing:
 - Metallicity: Hayden+13
 - Star formation rate: Rigault+13, Rigault+15, Jones+15
 - Specific star formation rate: Rigault+18
 - U V color: Roman+18
 - Stellar ages: Rose+19
 - Host galaxy dust: Scolnic+14
- What if the global host galaxy properties aren't precise enough?
- We need to learn:
 - If we use the wrong "step", how much is H₀ biased?

Roman+18

Measuring Host Galaxy Systematics by Building a Better Census of Nearby SN Ia Hosts

- The Foundation Supernova Survey will observe up to 800 z < 0.1 SN Ia on the Pan-STARRS telescope (PIs: Scolnic, Foley, Rest)
 - mmag-level photometric calibration
 - well-tested reduction and analysis pipeline
 - 5 Cepheid calibrators and counting
 - untargeted survey, understand selection effects better
- First data release: Foley+18
- Host Galaxies: Jones+18
- Dark energy: Jones+19
- H₀: Scolnic+in prep

Combined Hubble diagram from the PS1 telescope: ~1,400 SNe to date (including some CC SN contaminants in the high-*z* sample)

Exploring Local and Global Host Galaxy Biases

Should Type Ia Supernova Distances Be Corrected for Their Local Environments?

D. O. Jones¹, A. G. Riess^{2,3}, D. M. Scolnic^{4,11}, Y.-C. Pan^{5,6,12}, E. Johnson², D. A. Coulter¹, K. G. Dettman⁷, M. M. Foley⁸, R. J. Foley¹, M. E. Huber⁹, S. W. Jha⁷, C. D. Kilpatrick¹, R. P. Kirshner^{8,10}, A. Rest^{2,3}, A. S. B. Schultz⁹, and M. R. Siebert¹

- Already with Foundation DR1 and previous low-z data, we can **double** the low-z sample size when looking for local and global effects
- We looked at global/local host mass, host *u-g* color, and sSFR

wavelength

Jones+18; arXiv: 1805.05911

Importance of Bias Corrections

- Because SN shape and color correlate with host galaxy properties, bias corrections on SN shape and color parameters are important! (Kessler+17).
 - In Foundation we measured a host mass step twice as large when neglecting bias corrections
 - DES+18 measured host mass step = 0 after bias corrections

disclaimer: different host quantities measured here

Importance of Bias Corrections

- Because SN shape and color correlate with host galaxy properties, bias corrections on SN shape and color parameters are important! (Kessler+17).
 - In Foundation we measured a host mass step twice as large when neglecting bias corrections
 - DES+18 measured host mass step = 0 after bias corrections

Exploring Local and Global Host Galaxy Biases

- We examined variables of mass, *u g* color, and sSFR
- Local steps were significant, and so were the corresponding global steps

Jones+18; arXiv: 1805.05911

Exploring Local and Global Host Galaxy Biases

- We examined variables of mass, *u g* color, and sSFR
- Local steps were significant, and so were the corresponding global steps
- We found that a global step is usually similar or ~a couple hundredths of mag less than a local step (confirmed by Kim+18, Roman+18, Rose+19)

host	mass step		
local step	0.067 ± 0.017	mag	
global step	0.058 ± 0.018	mag	
host color step			
local step	0.060 ± 0.019	mag	
global step	0.061 ± 0.020	mag	

- But, a couple weird artifacts:
 - we found 3-sigma local mass step after global correction
 - we found targeted (calibrator sample/previous low-z sample) had smaller step than Foundation

Jones+18; arXiv: 1805.05911

What Effect Could Host Galaxy Biases Have on H₀?

- Predicted percent bias is proportional to size of step * (fraction of red/high-mass SNe in hubble flow - fraction of red/high-mass SNe in Cepheid galaxies)
- Before applying a new step, existing 0.7% correction for host mass step must be removed

Rigault+15

What Effect Could Host Galaxy Biases Have on H₀?

local mass step is the only step detected at > 2 sigma significance after global correction, but only shifts H_0 by -0.28 km s⁻¹ Mpc⁻¹

for another view, see Rigault+18

What Effect Could Host Galaxy Biases Have on H₀?

Analysis Variants	H _o
Best Fit (R16, w/ HST,Gaia , R18=73.53)	73.24
Reddening Law: LMC-like (R _v =2.5, not 3.3)	73.15
Reddening Law: Bulge-like (N15)	73.39
No Cepheid Outlier Rejection (normally 2%)	73.49
No Correction for Cepheid Extinction	74.79
No Truncation for Incomplete Period Range	74.39
Metallicity Gradient: None (normally fit)	73.30
Period-Luminosity: Single Slope	73.26
Period-Luminosity: Restrict to P>10 days	71.64
Period-Luminosity: Restrict to P<60 days	73.06
Supernovae z>0.01 (normally z>0.023)	73.38
Supernova Fitter: MLCS (normally SALT)	74.39
Supernova Hosts: Spiral (usually all types)	73.37
Supernova Hosts: Locally Star Forming	73.54
Cepheid Measurements: Optical Only	71.74

Orange dots: spiral or locally star-forming

Riess+16

Host Galaxies in the Next SH0ES Analysis

- 38 Cepheid calibrators, instead of 19
- At z > 0.01, only SNe in galaxies that likely contain Cepheids will be used

Riess+16 calibrators

Host Galaxies in the Next SH0ES Analysis

- 38 Cepheid calibrators, instead of 19
- At *z* > 0.01, only SNe in galaxies that likely contain Cepheids will be used
- Foundation will get spectra of every host galaxy at the SN location

Conclusions

- No known relationship between SNe Ia and their host galaxies can convincingly explain the Hubble tension - our team can't find a way to get a bias larger than -0.5 km s⁻¹ Mpc⁻¹
- The Foundation Supernova Survey will stress-test measurements of host galaxy biases and reduce the SN Ia systematics on H₀
- The next H₀ analysis will double the number of SNe Ia in Cepheid calibrator galaxies and will **only** use Hubble flow galaxies that are likely to have Cepheids

