CEPHEIDS AND OTHER STELLAR POPULATIONS

LUCAS MACRI

GEORGE P. & CYNTHIA WOODS MITCHELL INSTITUTE FOR FUNDAMENTAL PHYSICS & ASTRONOMY

DEPARTMENT OF PHYSICS & ASTRONOMY

COLLEGE OF SCIENCE

TEXAS A&M UNIVERSITY

ADVANTAGES OF SH0ES CEPHEIDS

- 3 <u>independent</u> absolute calibrations:
 - 50+ Milky Way parallaxes (*Hipparcos*, HST/FGS, HST/WFC3)
 - $^{\circ}~$ Maser distance to NGC 4258 (today's talk by Mark Reid)
 - Detached eclipsing binaries in the LMC (Pietrzyniski+18)
- Primary measurements made at H-band (1.6µm)
 - Impact of dust reduced by $>3\times$ relative to I-band
 - Used in reddening-free Wesenheit index (Madore 1982)
 - Minimal sensitivity to metallicity (Wielgorski+ 2017)
 - No Ceph.-SN residuals vs. distance: crowding under control
- Matrix-based formalism
 - Allows unbiased quantification of "analysis systematics"

LEAVITT LAWS IN THE LMC

MACRI+ (2015)

SH0ES ANCHOR #2 OF 5: LMC

- CTIO 1.5-m, 18 sq deg synoptic survey (Macri+ 2015)
 - >1400 OGLE Cepheids, P=2-100d, tied to 2MASS
 - 70 P~6-60d observed with HST/WFC3
- 1.1% DEB distance (Pietrzynski+ 2018)
- Fully-propagated uncertainty: $\sigma(anchor)=1.3\%$

SH0ES ANCHOR #2 OF 5: LMC

- CTIO 1.5-m, 18 sq deg synoptic survey (Macri+ 2015)
 - >1400 OGLE Cepheids, P=2-100d, tied to 2MASS
 - 70 P=6-60d observed with HST/WFC3
- 1.1% DEB distance (Pietrzynski+ 2018)
- Fully-propagated uncertainty: $\sigma(\text{anchor})=1.3\%$

SH₀ES DISTANCE LADDER

HST CYCLES 25 & 26

- Cepheid search in 15 additional hosts of SNe Ia
 - Increase calibrator sample to 38; should yield $\sigma(H_0)=1.6\%$
- Mira search in nearest 4 of those hosts
 - Consistency check of Cepheid Distance Scale

INDEPENDENT H_0 estimates

flat $\Lambda {\rm CDM}$

WHY MIRAS?

- Plentiful in all galaxies \rightarrow go beyond face-on spirals
- Large amplitudes in I-band \rightarrow relatively easy to detect 13.5 Soszynski+ (2009) 14 MAG 14.5 15 15.5 16 2500 3000 3500 4000 4500 5000 DAYS

MACRI+(2015); BHARDWAJ+(2016); YUAN+(2017)

WHY MIRAS?

- LSST will be sensitive enough to detect over 10^5 Miras in ~200 galaxies with D < 15 Mpc
- How to detect periodic but irregular variables using sparsely-sampled light curves?
- Develop & test novel periodogram technique with existing high-cadence observations (OGLE)
- Apply to sparser observations of M33 (Pellerin & Macri 2011)

GAUSSIAN PROCESS PERIODOGRAM

DECOMPOSITION OF MIRA LIGHT CURVE (OGLE LMC)

HE, YUAN+(2016)

GAUSSIAN PROCESS PERIODOGRAM

APPLIED TO NOISIER & SPARSER SIMULATED LIGHT CURVE

GAUSSIAN PROCESS PERIODOGRAM Successfully recovered primary period for

74% of simulated light curves

FIRST RESULTS FROM M33

- Searched for Miras among 2.4×10^5 stars in M33
 - Based on I-band data only, spanning \sim 7 years
 - Used Random Forest classifier trained on 18 features
- Discovered >1800 Mira candidates

FIRST RESULTS FROM M33

- Searched for Miras among 2.4×10^5 stars in M33
 - $_{\circ}~$ Based on I-band data only, spanning ${\sim}7$ years
 - Used Random Forest classifier trained on 18 features
- Discovered >1800 Mira candidates

LMC MIRA SAMPLE

- 690 Miras from Soszyński, Udalski, Szymański+ 2009
 - O/C-rich classification
 - 668 with JHKs magnitudes from our observations
- Issue: NIR observations concentrated at just three phases for a given variable, due to long periods
- Solution: Use OGLE I-band light curves to generate JHK_S templates through regression techniques
- Derive PLRs for O- and C-rich Miras

REGRESSION MODEL

Based on ~82,000 individual JHK_S measurements + OGLE light curves

MIRA TEMPLATE LIGHT CURVES

USE 3 NIR PHASE POINTS + TEMPLATE TO ESTIMATE MAX, MEAN, MIN

LEAVITT LAWS FOR LMC MIRAS

BACK TO M33

- Fit multi-band model to our JHK_S magnitudes (Gemini N, KPNO) and Javadi+2015 (UKIRT)
 - Significantly improved period recovery!

Leavitt laws for M33 Miras

PROSPECTS FOR LSST

- Next: extension of Gaussian Process periodogram to *griz* bands, test on simulated LSST light curves
- LSST: \geq 70 galaxies with \geq 100 Miras within 4 years

YUAN, PHD THESIS, TEXAS A&M UNIVERSITY (2017)

PROSPECTS FOR LSST

- Next: extension of Gaussian Process periodogram to *griz* bands, test on simulated LSST light curves
- LSST: \geq 70 galaxies with \geq 100 Miras within 4 years

YUAN, PHD THESIS, TEXAS A&M UNIVERSITY (2017)

M33 MIRAS IN LSST BANDS

M33 MIRAS IN LSST BANDS

CEPHEIDS VS. TRGB

- Distances to 10 SNe Ia hosts using Cepheids vs. TRGB, anchored to LMC (D=49.6 kpc ± 1.1%, Pietrzynski+2019)
- Cepheids: HST/WFC3 F160W
- LMC: Riess+2019; SN hosts: Riess+2016
- TRGB: HST/ACS F814W
- SN hosts: Jang & Lee 2017, Hatt+2018
- LMC: $I_0=14.52\pm0.04$ mag, $A_I=0.10\pm0.02$ mag (Jang & Lee 2017, OGLE-III) -0.01\pm0.02 mag (ground-to-HST transformation) yields $M_{TRGB}=-3.97\pm0.04$ mag (Yuan+, in prep.; see poster)
- $H_0 = 73.2 \pm 2.2$ (TRGB) vs 73.5 ± 1.8 (Cepheids)

CEPHEIDS VS TRGB

YUAN+ (IN PREP.)

DO CEPHEIDS & TRGB AGREE?

Depends on which LMC TRGB calibration you adopt... $(\mu=18.477 \text{ mag in all cases below})$

A _I (mag)	Extinction method	I _{obs}	M _I	H ₀	Source
$0.10 \pm 0.02^{*}$	OGLE red clump	14.62	$-3.97\pm0.03^{*}$	73.2	Jang & Lee 17
0.05 ± 0.05	NIR colors within LMC	14.59±0.02	-3.95±0.03	73.9	Hatt+18, Hoyt+17
0.16 ± 0.02	hosts w/diff. [Fe/H]	14.60±0.02	-4.05±0.02	69.8	Freedman+19

*: provided by Jang & Lee

3 different methods for estimating extinction \rightarrow 5% changes in H₀ There are 3 σ differences among these...could [Fe/H] explain?

TRGB COLORS TO INFER EXTINCTION Freedman+2019 estimate LMC extinction using linear color slope, but TRGB depends on age *and* metallicity

LMC too bright relative to lower [Fe/H] SMC, IC 1613

Stellar models indicate extinction overestimated by A_I~0.1 mag; 5% lower H₀

see also McQuinn+2019

RGB [Fe/H]: LMC~-0.6, SMC~-1.2 (Nidever+ 2019); IC 1613 ~-1.4 (Sibbons+2015)

INDEPENDENT H_0 estimates

flat $\Lambda {\rm CDM}$

