H₀: NGC 4258 and the Megamaser Cosmology Project

Mark J Reid Center for Astrophysics | Harvard & Smithsonian

- 1. Estimating distance from H₂O masers in AGN accretion disks
- 2. NGC 4258 nearby (7.6 Mpc); used to calibrate Cepheids
- 3. More distant AGN in "Hubble flow" provide independent H₀ estimates

Herrnstein, Moran, Greenhill et al (1999)

- Seyfert 2 galaxy
- H₂O masers in accretion disk
- Radius = 0.25 pc
- Nearly edge-on; slightly warped
- Rotation speed = 1000 km/s
- Orbital period = 1000 years
- M = 4 x 10⁷ M_{sun}
- Geometric model → D
- Calibrate Cepheid PL relation

AGN Maser Angular-Diameter Distance

Maser Distance Measurements (2)

Miyoshi+1995: $D = 6.4 \pm 0.9 \text{ Mpc}$

Hernstein+1999: $D = 7.2 \pm 0.3 \pm 0.4 \text{ Mpc}$

Model Fitting

D

Μ

 X_0

Global Parameters

- = distance (or H_0)
- = central mass
- V_{opt} = recessional velocity
 - = central X-position
- Y₀ = central Y-position
 - = disk inclination
- di/dr = inclination warp
- PA = disk position angle
- dPA/dr = position angle warp
- = vel correction to H-flow V_{cor}
- = orbital eccentricity ecc
- = argument of pericenter ω
- $d\omega/dr$ = pericenter twisting

Maser spot_i parameters ri

- = disk radius
- = disk azimuth φ_{ι}

Miyoshi+1995: $D = 6.4 \pm 0.9 \text{ Mpc}$ Hernstein+1999: $D = 7.2 \pm 0.3 \pm 0.4 \text{ Mpc}$ Humphreys+2013: $D = 7.60 \pm 0.17 \pm 0.15 \text{ Mpc}$ (ecc = 0.006 ± 0.001)Riess+2016: $D = 7.54 \pm 0.17 \pm 0.10 \text{ Mpc}$ $\rightarrow H_0 = 72.2 \pm 2.4$ Mpc

Model Fitting

"floors" (e_x, e_y) \mathbf{e}_{V} e_A

Error

Previously: Added in quadrature to measured uncertainties

User adjustable; treated as a • contribution to systematic uncertainty

This talk:

 Incorporated as model parameters, adjusted in MCMC trials automatically •Adopt loose priors..."let the data speak" Marginalize over them

Dom Pesce (postdoc at CfA) written an independent fitting code (Hamiltonian MCMC) and we get the same results.

Miyoshi+1995: $D = 6.4 \pm 0.9 \text{ Mpc}$ Hernstein+1999: $D = 7.2 \pm 0.3 \pm 0.4 \text{ Mpc}$ Humphreys+2013: $D = 7.60 \pm 0.17 \pm 0.15 \text{ Mpc}$ Riess+2016: $D = 7.54 \pm 0.17 \pm 0.10 \text{ Mpc}$ $\rightarrow H_0 = 72.2 \pm 2.4 \text{ Mpc}$ This talk: $D = 7.57 \pm 0.08 \pm 0.08 \text{ Mpc}$ $\rightarrow H_0 = 72.0 \pm 1.9 \text{ Mpc}$

Maser Cosmology Project Braatz, Condon, Gao, Henkel, Kuo, Lo, Pesce & Reid

- Goal: H_o accurate to 3%
- How: Geometric Distances to H₂O masers in Hubble Flow

GBT finds masers

VLBA+GBT+Effelsberg maps them

H₂O Megamaser Disks

UGC 3789

UGC 3789

2 km/s/yr 5 km/s/yr 6 km/s/yr 10 0.1 UGC 3789 0 0.05 Ŧ 0 0.1 48 0.05 5 0 0.1 79 0.05 0 117 Flux Density (Jy) 0 2000 0 2000 0 145 3400 3200 3250 3300 3350 0 $V_{LSR} (km s^{-1})$ 0.05 170-0 0.1 277 0.05 0 0.1 334 0.05 0 359 0.05 0

3220

3240

3260

3280

LSR Velocity (km s^{-1})

3300

3320

A (km $\mathrm{s}^{-1}~\mathrm{yr}^{-1})$

UGC 3789

 $H_0 = 66.2 \pm 6.3 \text{ km/s/Mpc}$

 M_{BH} = 1.21 (± 0.09) x 10^7 $M_{sun};~V_{GC\text{-frame}}$ = 3470 ± 1 km/s; ~ D = 53.2 ± 4.5 Mpc

H₀: an MCP Status Report

Galaxy	Distance (Mpc)	H ₀ (km/s/Mpc)
UGC 3789	53	66.2 ± 6.3
CGCG 074-064	85	83.2 ± 6.7
NGC 5765b	110	75.5 ± 4.5
NGC 6264	141	74.9 ±10.8
Combined		74.8 ± 3.1

(variance-weighted average with $\chi^2 = 3.45$ for 3 degrees of freedom)