H_{0} : NGC 4258 and the Megamaser Cosmology Project

Mark J Reid
Center for Astrophysics | Harvard \& Smithsonian

1. Estimating distance from $\mathrm{H}_{2} \mathrm{O}$ masers in AGN accretion disks
2. NGC 4258 nearby (7.6 Mpc); used to calibrate Cepheids
3. More distant AGN in "Hubble flow" provide independent H_{0} estimates

NGC 4258

Herrnstein, Moran, Greenhill et al (1999)

- Seyfert 2 galaxy
- $\mathrm{H}_{2} \mathrm{O}$ masers in accretion disk
- Radius $=0.25 \mathrm{pc}$
- Nearly edge-on; slightly warped
- Rotation speed $=1000 \mathrm{~km} / \mathrm{s}$
- Orbital period $=1000$ years
- $\mathrm{M}=4 \times 10^{7} \mathrm{M}_{\text {sun }}$
- Geometric model \rightarrow D
- Calibrate Cepheid PL relation

AGN Maser Angular-Diameter Distance

$$
\begin{aligned}
& \mathrm{A}=\mathrm{V}^{2} / \mathrm{R} \\
& \mathrm{R}=\mathrm{D} \theta \\
& \begin{array}{l}
\text { Velocity drift of systemic masers } \\
\text { over time }
\end{array}
\end{aligned}
$$

Maser Distance Measurements (2)

NGC 4258

Miyoshi+1995: $\quad \mathrm{D}=6.4 \pm 0.9 \mathrm{Mpc}$
Hernstein+1999: $\quad D=7.2 \pm 0.3 \pm 0.4 \mathrm{Mpc}$

Model Fitting

	Global Parameters
D	$=$ distance (or H_{0})
M	= central mass
$\mathrm{V}_{\text {opt }}$	= recessional velocity
X_{0}	= central X-position
Y_{0}	= central Y -position
i	= disk inclination
di/dr	= inclination warp
	= disk position angle
dPA/d	$\mathrm{r}=$ position angle warp
$\mathrm{V}_{\text {cor }}$	= vel correction to H-flow
	= orbital eccentricity
	= argument of pericenter
$\mathrm{d} \omega / \mathrm{dr}$	$=$ pericenter twisting
	ser spoti ${ }_{\text {parameters }}$
r_{i}	= disk radius
φ_{1}	= disk azimuth

NGC 4258

Miyoshi+1995: $\quad \mathrm{D}=6.4 \pm 0.9 \mathrm{Mpc}$
Hernstein+1999: $\quad D=7.2 \pm 0.3 \pm 0.4 \mathrm{Mpc}$
Humphreys+2013: $\mathrm{D}=7.60 \pm 0.17 \pm 0.15 \mathrm{Mpc} \quad(\mathrm{ecc}=0.006 \pm 0.001)$
Riess+2016:

$$
D=7.54 \pm 0.17 \pm 0.10 \mathrm{Mpc} \quad \rightarrow \mathrm{H}_{0}=72.2 \pm 2.4
$$

Mpc

Model Fitting

NGC 4258

Miyoshi+1995: $\quad \mathrm{D}=6.4 \pm$ 0.9 Mpc
Hernstein+1999: $\quad D=7.2 \pm 0.3 \pm 0.4 \mathrm{Mpc}$
Humphreys+2013: $\mathrm{D}=7.60 \pm 0.17 \pm 0.15 \mathrm{Mpc}$
Riess+2016: $\quad \mathrm{D}=7.54 \pm 0.17 \pm 0.10 \mathrm{Mpc} \quad \rightarrow \mathrm{H}_{0}=72.2 \pm 2.4$ Mpc

This talk:

$$
\mathrm{D}=7.57 \pm 0.08 \pm 0.08 \mathrm{Mpc} \quad \rightarrow \mathrm{H}_{0}=72.0 \pm 1.9
$$

Mpc

Maser Cosmology Project
 Braatz, Condon, Gao, Henkel, Kuo, Lo, Pesce \& Reid

- Goal: H_{o} accurate to 3%
- How: Geometric Distances to $\mathrm{H}_{2} \mathrm{O}$ masers in Hubble Flow

GBT finds masers
VLBA+GBT+Effelsberg maps them

$\mathrm{H}_{2} \mathrm{O}$ Megamaser Disks

UGC 3789

UGC 3789

$\mathrm{M}_{\mathrm{BH}}=1.21(\pm 0.09) \times 10^{7} \mathrm{M}_{\text {sun }} ; \quad \mathrm{V}_{\mathrm{GC} \text {-frame }}=3470 \pm 1 \mathrm{~km} / \mathrm{s} ; \quad \mathrm{D}=53.2 \pm 4.5$ Mpc

H_{0} : an MCP Status Report

Galaxy	Distance (Mpc)	H_{0} $(\mathrm{~km} / \mathrm{s} / \mathrm{Mpc})$
UGC 3789	53	66.2 ± 6.3
CGCG 074-064	85	83.2 ± 6.7
NGC 5765b	110	75.5 ± 4.5
NGC 6264	141	74.9 ± 10.8
Combined		74.8 ± 3.1
(variance-weighted average with $\chi^{2}=3.45$ for 3 degrees of freedom)		

