
On the (unmetaphorical) entanglement gap in
CFTs

(and related topics)

John Cardy

University of Oxford

Closing the (metaphorical) Entanglement Gap, KITP, June
2015



On the (unmetaphorical) entanglement gap in
CFTs

(and related topics)

John Cardy

University of Oxford

Closing the (metaphorical) Entanglement Gap, KITP, June
2015

John Cardy

John Cardy

John Cardy
literal?



This talk is going be mainly about Rényi entropies in some
simple geometries, mainly CFTs in 1+1 dimensions (but not
entirely)

Bipartite entanglement H = HA ⌦HB

Whole system in pure state (usually ground state) ⇢ = |0ih0|

Reduced density matrix ⇢A = TrHB ⇢ ⌘ e�2⇡KA

Entanglement hamiltonian KA, eigenvalues E0 < E1  E2  . . .

Rényi entropies S(n)
A = (1 � n)�1 log Tr e�2⇡nKA



I how does E0 behave?
I what can we say about the entanglement gaps Ej � E0 and

their degeneracies?
I what is the general form of the density of states of KA?
I [what can we say about (correlation functions in)

eigenstates of KA?]

In principle the Rényi entropies determine the entanglement
spectrum, and but as we’ll see it’s mainly the behaviors at large
and small n which are important

As usual, we can say much more in d =1+1 dimensions than
for d > 2, and mainly for relativistic field theories.

In fact, in 1+1 dimensions several different cases can be unified
in one formula.



1. Single interval (�R,R) in a 1+1-dimensional CFT
τ

x

Tr ⇢n
A = Tr e�2⇡nKA =

ZRn

Z n
R1



This problem was considered by Holzhey et al. [1994]
[Calabrese-JC, 2004].

In this approach, ZR1 was trivial and (@/@R) log ZRn came from
evaluating hTµ⌫iRn by conformal mapping and integratingR1
�1hTxx(0, ⌧)id⌧ .

But we can regularize another way, by cutting out small discs
(or slits) around the end points of the interval.



In that case, both Rn and R1 are conformally equivalent to
annuli.

τ

x
A

ε

A

2   nπ

2 log(R/  )

Tr ⇢n
A =

Zannulus

⇣
2⇡n

2 log(R/✏)

⌘

Zannulus

⇣
2⇡

2 log(R/✏)

⌘n

So S(n)
A is given in terms of the free energy of a system of

length ` = 2 log(R/✏) at inverse temperature � = 2⇡n, including
all universal finite size effects when � ⇠ `



Zannulus is more easily expressed in terms of

q = e�⇡ height/width = e�⇡2/ log(R/✏) ! 1

Zann = q�c/24�1 +
X

j

njq�j
�

or equivalently

q̃ = e�4⇡ width/height ⇠ (✏/R)4 ! 0

Zann = q̃�c/24�b2
0 +

X

j

b2
j q̃�j

�

Since q ! qn ) q̃ ! q̃1/n, the latter expansion is OK unless
n % log(R/✏)
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Using only the leading term as q̃ ! 0 then gives the standard
result [Holzhey et al. (1994), Calabrese + JC (2004)]

Tr ⇢n
A ⇠ (b2

0)
1�n

�
q̃1/n��c/24

�
q̃�c/24

�n

so that

(n � 1)S(n)
A ⇠ (c/6)(n � 1/n) log(R/✏) + 2(n � 1) log b0

Note however that the linear term in n now comes from the
denominator Z n

R1
.

The log b0 term is the Affleck-Ludwig boundary entropy

We also get ’unusual’ corrections O(q̃�j/n) ⇠ (✏/R)4�j/n

[Calabrese-JC, 2010]



We can identify the eigenvalues of ⇢A as being of the form

q�c/24+�j+N

Zann(q)
⇠ q�c/24+�j+N

bL
0bR

0 q̃�c/24

(with degeneracies nj ) so that

E0 ⇠ (c/6) log(R/✏) + 2 log b0 (single copy entanglement)

Note this comes entirely from the denominator Z n
R1

!

The entanglement gaps are [cf Calabrese-Lefevre, 2008]

Ej � E0 ⇠ ⇡2(�j + N)

log(R/✏)



More generally we see that, for this case, the Rényi n-entropy is
simply related to the thermodynamic entropy of the CFT at
inverse temperature � = 2⇡n in an interval of length 2 log(R/✏)
including universal boundary terms, that is given by

Z / Tr exp

 
��
Z log(R/✏)

� log(R/✏)
T̂tt(x)dx

!

From this we can undo the conformal mappings to find the
result [Casini-Huerta-Myers] for the entanglement hamiltonian

KA =

Z R�✏

�R+✏

(R2 � x2)

2R
T̂tt(x)dx

The asymptotic density of states of KA is just that of a CFT on
an interval of length 2 log(R/✏), i.e.

µ(E) ⇠ econst.
p

cE log(R/✏)

(power of E simply related to the the n�1 behavior as n ! 0).



2. Single Interval (0,R) at the end of a semi-infinite
line

This is once again an annulus, now with

q = e�2⇡2/ log(R/✏) q̃ ⇠ (✏/R)2

and similar results apply:

(1�n)S(n)
A ⇠ (c/12)(n�1/n) log(✏/R)+(n�1)

�
log bL

0 + log bR
0
�

The boundary terms do not have to be the same as before.

KA =

Z R�✏

✏

(R2 � x2)

2R
T̂tt(x)dx



3. Entanglement growth after a Quantum Quench
In this case we consider the entanglement between A = (0,1)
and B = (�1, 0) following a quench to a CFT from a state with
short-range entanglement

| 0i = e�(�/4)HCFT |Bi
where |Bi is a conformal boundary state

B

A

0

β/2

τi

B

continued to ⌧ = �
4 + it . This is also an annulus with

q ⇠ exp

 
� 2⇡2

log(�/⇡✏) + log cosh(2⇡t/�)

!
⇠ e�⇡�/t , q̃ ⇠

✓
⇡✏/�

cosh(2⇡t/�)

◆2
⇠ e�4⇡t/�



So [Calabrese-JC 2005]

SA ⇠ (c/6) log cosh(2⇡t/�) / t2 (short times), / t (t ! 1)

Entanglement gaps Ej � E0 / �j�/t (t ! 1)

Entanglement hamiltonian

KA = (�/2⇡)
Z 1

✏
f (x , t)T̂tt(x)dx

where f (x , 0) = sinh(2⇡x/�) and

f (x , t) ⇡ 1 (x < t); f (x , t) ⇠ e2⇡(x�t)/� (x > t)

Thus the interval (0, t) is thermalized, x > t retains
short-ranged entanglement.



4. Non-critical integrable lattice models
Consider the entanglement between A = (0,1) and
B = (�1, 0) in a 1+1d lattice model.

⇢A / (Corner Transfer Matrix)4.
Baxter showed that if the weights satisfy
the Yang-Baxter relations (and some other
assumptions), its spectrum is simple.

By Baxter magic, the Rényi entropies have exactly the same
form as for a CFT discussed, that is they are given in terms of
Zann(qn)/Zann(q)n where now however

q̃ / (⇠/a)�2, q ⇠ e�const./ log(⇠/a)

and a is now the lattice spacing rather than a macroscopic
cut-off ✏.

This observation is crying out for an entanglement explanation!



Higher dimensions
For a sphere in d space-time dimensions [Casini-Huerta-Myers]

KA =

Z

r<R�✏

(R2 � r2)

2R
T̂⌧⌧ (r)dd�1r

For Tr e�2⇡nKA the effective local inverse temperature is

�eff(r) = 2⇡n
(R2 � r2)

2R

and as long as this is ⌧ R, i.e. n ⌧ 1, the contributions from
each element dd�1r are additive and given by Stefan’s law:

S(n)
A ⇠ �

Z
�

�eff(r)d�1 dd�1r / �

nd�1

0

@Area
✏d�2 + · · ·+

d evenz }| {
O(log(R/✏))

1

A

� = Stefan-Boltzmann constant for the CFT

Asymptotic density of states of the CFT is of the form econst.�1/d E1�1/d
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But near the boundary �eff(r) ⇠ n✏ is small unless n is very
large. The contribution from this region is

Z R�✏ �

(n(R � r))d�1 Rd�2drd⌦ ⇠ �

nd�1
Area
✏d�2

So the n-dependence of the area law for the Rényi entropies is
simple:

(n � 1)S(n)
A ⇠ �

✓
n � 1

nd�1

◆
(R/✏)d�2

as R/✏! 1 at fixed n. Note that such a simple law does not
follow for the universal log or O(1) corrections!

A more careful analysis shows this is valid for
n ⌧ (R/✏)(d�2)/(d�1), and the entanglement gaps behave like

Ej � E0 / (✏/R)(d�2)/(d�1) (c.f.
�

log(R/✏)
��1 for d = 2)



Summary

For several simple cases in 1+1-dimensions (single interval,

semi-infinite system after a quantum quench or a non-critical integrable lattice model)

with a suitable regularization the Rényi entropies and the
entanglement spectrum are known exactly and are given by the
finite temperature partition function of the CFT on an open
interval

For entanglement of a spherical region in a d > 2 dimensional
CFT, the n ! 0 behavior of the Rényi entropies is ⇠ �/nd�1.
For the area law coefficient this extends to all n for sufficiently
large R.


