Measuring Entanglement Entropy

Ultracold atom synthetic quantum matter:

"First Principles" engineered materials

Bose Hubbard

 Ising spin
optical lattice graphene

liquid

Quantum gas microscope

Bakr et al., Nature 462, 74 (2009), Bakr et al., Science. 1192368 (June 2010)
Previous work on single site addressability in lattices:
Detecting single atoms in large spacing lattices (D. Weiss) and 1D standing waves (D. Meschede), Electron Microscope (H. Ott), Absorption imaging (J. Steinhauer), single trap (P. Grangier, Weinfurter/Weber), few site resolution (C. Chin), See also: Sherson et al., Nature

Experimental Setup

Hemispheric

Stainless
Steel
Clamp beam entry

... and the whole apparatus

Bose-Hubbard Hamiltonian

$$
H=\underset{\langle i, j\rangle}{J} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} U \quad \hat{n}_{i}\left(\hat{n}_{i} \quad 1\right)
$$

Tunneling term:
J : tunneling matrix element
$\hat{a}_{i}^{\dagger} \hat{a}_{j}$: tunneling from site j to site i

Interaction term:
U : on-site interaction matrix element
$\hat{n}_{i}\left(\hat{n}_{i}-1\right): n$ atoms collide with n -1 atoms on same site

Ratio between tunneling J and interaction U can be widely varied by changing depth of 3D lattice potential!
M.P.A. Fisher et al, PRB 40, 546 (1989), D. Jaksch et al., PRL 81, 3108 (1998)

Superfluid - Mott insulator quantum phase transition

Superfluid

Mott insulator

Bakr et al., Science. 1192368 (June 2010)

Projecting arbitrary potential landscapes

Digital Mirror Device (DMD)

Projecting arbitrary potential landscapes

Prepare low entropy
Mott insulator state

Modify potential landscape to create desired system
e.g. system with 2×4 lattice sites

Entanglement In many-body systems

Simplest case: two spins Bell state

$$
\frac{1}{\sqrt{2}}(|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle)
$$

Many-body system: Bipartite entanglement

Product state:

$$
|\Psi\rangle=\left|\Psi_{A}\right\rangle \otimes\left|\Psi_{B}\right\rangle \quad \text { e.g. Mott insulator }
$$

Entangled state:

$$
|\Psi\rangle \neq\left|\Psi_{A}\right\rangle \otimes\left|\Psi_{B}\right\rangle
$$

e.g. Superfluid

Entanglement entropy

Reduced density matrix:
$\rho_{A}=\operatorname{tr}_{B}\{\rho\}=\left|\Psi_{A}\right\rangle \otimes\left\langle\Psi_{A}\right|$

Product state
\rightarrow Pure state

Entangled state
\rightarrow Mixed state

Von Neuman entropy
$S_{V N}\left(\rho_{A}\right)=-\operatorname{tr}\left\{\rho_{A} \log \rho_{A}\right\}$
Renyi Entropy
$=0$
>0
$S_{n}\left(\rho_{\alpha}\right)=\frac{1}{1-n} \log \operatorname{Tr}\left\{\rho_{\alpha}^{n}\right\}$
\rightarrow Entanglement entropy

Idea: Measure State purity in many-body systems

Reduced density matrix:
$\rho_{A}=\operatorname{tr}_{B}\{\rho\}=\left|\Psi_{A}\right\rangle \otimes\left\langle\Psi_{A}\right|$

Product state
\rightarrow Pure state $\quad \rightarrow$ Mixed state

Many-body Hong-Ou-Mandel interferometry

Alves and Jaksch, PRL 93, 110501 (2004)
Mintert et al., PRL 95, 260502 (2005)
Daley et al., PRL 109, 020505 (2012)

Hong-Ou-Mandel interference

No coincidence detection for identical photons

Beam splitter operation: Rabi flopping in a double well

$a_{L}^{\dagger} \rightarrow a_{L}^{\dagger}-i a_{R}^{\dagger}$
$a_{R}^{\dagger} \rightarrow a_{L}^{\dagger}+i a_{R}^{\dagger}$

Also see: Kaufman A M et al., Science 345, 306 (2014)
Without single atom detection:
Trotzky et al., PRL 105, 265303 (2010)
also Esslinger group

Two bosons on a beam splitter

Hong-Ou-Mandel interference

Two bosons on a beam splitter

Hong-Ou-Mandel interference

Beam splitter

measured fidelity:
96(4)\%

4(4)\%

first revival:
9(6)\%

91(6)\%
limited by interaction
Also see: Kaufman A M et al., Science 345, 306 (2014)
Without single atom detection: Trotzky et al., PRL 105, 265303 (2010), also Esslinger group

HOM-Interference of Many-Body States

Interference of many-body states

If $|\Psi\rangle_{1}=|\Psi\rangle_{2}$, deterministic parity after beam splitter

Measure purity $\operatorname{Tr}\left(\rho^{2}\right)$

Alves and Jaksch, PRL 93 (2004) Daley et al., PRL 109 (2012)

Generalized Hong-Ou-Mandel interference: 2×2 particles

Quantum interference of bosonic many body systems

2 identical N-particle

| $\left\langle P_{i}\right\rangle$ |
| :---: | :---: | :---: |\(=\underset{\substack{\operatorname{Tr}\left(\rho_{1} \rho_{2}\right)

average

parity}}{quantum state}\)| $\rho_{1}=\rho_{2}$ |
| :---: |
| overlap |$\quad \operatorname{Tr}\left(\rho^{2}\right)$

$$
P_{i}=\prod_{k} p_{i}^{(k)}
$$

Entanglement entropy

Many body quantum system

Initially: System in pure state
Cut: Entangled?
Trace: If entangled, trace creates mixed state,
\rightarrow entropy is increased

Measuring many-body entanglement

Mott Insulator

Superfluid

Entangled

Measuring many-body entanglement

Mott Insulator

Superfluid

Ref: Alves C M, Jaksch D, PRL 93, 110501 (2004), Daley A J et al, PRL 109, 020505 (2012)

Entanglement Entropy for 2 copies of 4 -site systems

Entanglement Entropy for 2 copies of 4 -site systems

Entanglement Entropy for 2 copies of 4 -site systems

Entanglement Entropy for 2 copies of 4 -site systems

Entanglement Entropy for 2 copies of 4 -site systems

Mutual Information $I_{A B}$

Non equilibrium: Quench dynamics

Entanglement Entropy

- Measure entanglement entropy in Bose-Hubbard lattice

- Advanced systems: Fermions, Fractional quantum Hall states, ...

Generalized HOM

Quantum-compare two sytems

- what else can I learn? what correlation functions would be interesting?
- validate quantum simulation
- n-systems: extract quantities that are polynomial in ρ^{n} (here: purity trace of ρ^{2})

Thank you

Rubidium lab: Eric Tai Ruichao Ma Philipp Preiss Matthew Rispoli Alex Lukin Rajibul Islam Lithium lab: Maxwell Parsons Anton Mazurenko Sebastian Blatt Christie Chiu

Erbium lab:
Susannah Dickerson Anne Hebert Aaron Krahn

Recent group members
Florian Huber Jon Simon Waseem Bakr Philip Zupancic

Thanks to Theory: Peter Zoller, Andrew Daley, Hannes Pichler, Manuel Endres ...

Moore Foundation

Many-body Hong-Ou Mandel

- Bosonic states under a beamsplitter operation:

$$
T=\pi /(4 J)
$$

symmetric states basis (+1):

$$
\left\{\left(a_{1}^{\dagger}-a_{2}^{\dagger}\right)^{2 n}\left(a_{1}^{\dagger}+a_{2}^{\dagger}\right)^{m}|\mathrm{vac}\rangle\right\}
$$

$a_{1}^{\dagger}|\mathrm{vac}\rangle \rightarrow\left(a_{1}^{\dagger}+a_{2}^{\dagger}\right) / \sqrt{2}|\mathrm{vac}\rangle$
$a_{2}^{\dagger}|\mathrm{vac}\rangle \rightarrow\left(a_{1}^{\dagger}-a_{2}^{\dagger}\right) / \sqrt{2}|\mathrm{vac}\rangle$

- For many sites, the symmetry under exchange can be taken by multiplying the results from each individual sites (it is more subtle for fermions)
- Thus, total even numbers in each copy are directly related to symmetry of the state under exchange

Relationship back to many-body inner product of states

- Why are the states symmetric if they are identical? Consider the swap operation on two copies of a state

$$
\begin{aligned}
& V_{2}\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left|\psi_{2}\right\rangle \otimes\left|\psi_{1}\right\rangle \\
& \operatorname{tr}\left\{V_{2} \rho_{1} \otimes \rho_{2}\right\}=\operatorname{tr}\left\{V_{2} \sum_{i j k l} \rho_{i j}^{(1)} \rho_{k l}^{(2)}|i\rangle\langle j| \otimes|k\rangle\langle l|\right\} \\
&= \operatorname{tr}\left\{\sum_{i j k l} \rho_{i j}^{(1)} \rho_{k l}^{(2)}|k\rangle\langle j| \otimes|i\rangle\langle l|\right\} \\
&= \sum_{i j k l} \rho_{i j}^{(1)} \rho_{k l}^{(2)} \delta_{k j} \delta_{i l}=\sum_{i k} \rho_{i k}^{(1)} \rho_{k i}^{(2)}=\operatorname{tr}\left\{\rho_{1} \rho_{2}\right\}
\end{aligned}
$$

$$
\text { A. K. Ekert et al., Phys. Rev. Lett. 88, } 217901 \text { (2002). }
$$

- The swap operation can be split into symmetric and anti-symmetric subspaces

$$
\begin{aligned}
& \operatorname{Tr}\left\{\rho^{2}\right\}=\operatorname{Tr}\{V \rho \otimes \rho\} \\
& V=P^{(+)}-P^{(-)}
\end{aligned}
$$

$$
\text { C. Moura Alves et al., Phys. Rev. Lett. 93, } 110501 \text { (2004) }
$$

$$
\text { F. Mintert et al., Phys. Rev. Lett. 95, } 260502 \text { (2005) }
$$

- The beamsplitter identifies these subspaces, we we saw on the previous slide
- For identical initial states (and for bosons, where there are no complications with exchange signs between different lattice sites), we then obtain even number of particles after the beamsplitter in each copy.
- For fermions this applies for a single site, but is more subtle with multiple sites.

Fermi quantum gas microscopes

Sample Image

- 44,000 imaging pulses
- Collect ~1000 photons/atom

Point-spread Function

Band mapping with 3000 atoms

Raman Imaging Scheme

Raman Imaging Scheme

- Single pair of beams: momentum transfer along all axes with degenerate trap frequencies (1.4 MHz)
- Pulsed cooling necessary to eliminate background from Raman light

Raman Imaging Scheme

- Single pair of beams: momentum transfer along all axes with degenerate trap frequencies (1.4 MHz)
- Pulsed cooling necessary to eliminate background from Raman light

