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Holographic mutual information: Review

Ryu-Takayanagi [’06] formula:

S(A) = min
m∼A

area(m)

m(A) := minimizer
(in this talk 4GN = ln 2 = 1)

A

m(A)

.

Mutual information: I(A : B) := S(A) + S(B)− S(AB)
Measures total amount of correlation between A & B



A B B

m(AB) = m(A) [ m(B)
m(AB) 6= m(A) [ m(B)

A

.

Properties:

1. Subadditivity: I(A : B) ≥ 0 .

2. Strong subadditivity [Headrick-Takayanagi ’07]:

I(A : B|C) := I(A : BC)− I(A : C) ≥ 0

(conditional MI)

BA C

+

+

�
�

.

3. Monogamy [Hayden-Headrick-Maloney ’11]:

I3(A : B : C) := I(A : B) + I(A : C)− I(A : BC) ≤ 0

(tripartite information) .

4. “Phase transitions” [Headrick ’10]

separation

I(A:B)

.

Note: 1 & 2 are general properties of MI, while 3 & 4 are special properties of RT

Interpretation?

Geometry of bulk encodes state of field theory
RT tells us something about that encoding .

Do microstate bits of ρA “live” on m(A)?
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A

m(A)

.

Questions:

• Why does m(AB) jump at phase transition, when ρAB presumably changes continuously?

(Not a conventional exchange-of-dominant-macrostate phase transition [Headrick ’13].)

A B B

m(AB) = m(A) [ m(B)
m(AB) 6= m(A) [ m(B)

A

separation

I(A:B)

.

• Recall information-theoretic meaning of MI

Classical: I(A : B) counts # of bits that are correlated (redundant) between A and B
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H(A|B)

H(A|B) := S(AB)− S(B) (conditional entropy) .

Quantum: Each entangled bit counts like 2 correlated bits
Can lead to H(A|B) < 0
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Conditional MI: I(A : B|C) := I(A : BC)− I(A : C)
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.

Why do differences between areas of surfaces—in different parts
of space—give MI, conditional entropy, and conditional MI?

What does holographic proof of SSA have to do with mono-
tonicity of correlations?

BA C

+

+
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�

.
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To answer these questions, I will give a new formulation of RT

• Does not refer to minimal surfaces; they are demoted to a mere calculational device

• Suggests a new way to think about the connection between spacetime geometry and information

Max-flow min-cut

(Originally on graphs, in context of network theory; continuous version [Federer ’74, Strang ’83, Nozawa ’90])

Consider a Riemannian manifold with boundary

Flow v := vector field s.t. ∇ · v = 0, |v| ≤ 1
Equivalently, oriented threads (flow lines) with transverse density = |v| ≤ 1

A = subset of boundary

Max-flow min-cut theorem:

max
v

∫
A
v = min

m∼A
area(m)

v(A) := maximizer

A

m(A)

v(A)

.

Ryu-Takayanagi 2.0:

S(A) = max
v

∫
A
v

= max # of threads coming out of A

Threads have cross section of 4 Planck areas

A

.

Facts about max flows:

1. v(A) is far from unique

We will see that this “gauge freedom” is physically important

2. On m(A), v(A) = unit normal—threads are maximally crowded .

3. v(A) changes continuously under continuous changes in A .

4. Different flows for different boundary regions:
one cannot necessarily simultaneously maximize flux on A & on B

However, for nested regions one can: there exists v(A,AB) that maximizes
∫
A v &

∫
AB v
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Threads & information

Example 1: S(A) = S(B) = 2, S(AB) = 3⇒ I(A : B) = 1

Maximizing on AB, we can also maximize on either A or B

BA BA

v(A, AB) v(B, AB)

Lesson 1: Correlated bits are threads that can be moved (are redundant) between A & B .

Conditional entropy: H(A|B) := S(AB)− S(B)

=

∫
AB

v(B,AB)−
∫
B
v(B,AB)

=

∫
A
v(B,AB)

= number of threads remaining on A when we “measure” B .

.

Example 2: S(A) = S(B) = 2, S(AB) = 1⇒ I(A : B) = 3; H(A|B) = −1⇒ entanglement!

One thread leaving A must go to B, and vice versa!

BA BA

v(A, AB) v(B, AB)

Lesson 2: Entangled qubits are threads connecting A & B that switch direction; A measures B and vice versa.

Subadditivity is clear .

Conditional MI:

BA C

I(A : B|C) = H(A|C)−H(A|BC)

=

∫
A
v(C,AC)−

∫
A
v(BC,ABC)

= (max on A)− (min on A), while maximizing on C & ABC

= moveable between A & B, while maximizing on C & ABC

= (moveable between A & BC)− (moveable between A & C)

= I(A : BC)− I(A : C) .
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Strong subadditivity is clear .

Exercise for reader: Find flow interpretation of other properties: Araki-Lieb, S(A) = S(Ac) for pure states, . . .

Open questions

• Flow-based proof/understanding of monogamy of MI? .

• Higher-derivative corrections (e.g. Gauss-Bonnet)? .

• Quantum corrections (perturbative & non-perturbative)? .

• Covariant holographic entanglement entropy [Hubeny-Rangamani-Takayanagi ’07]:

– Maximin [Wall ’12] → maximax

– Fully covariant flow version of HRT? .

• Can we understand the emergence of space from these threads? Is space a “string-net”?
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