A New Perspective on Holographic Entanglement

Matthew Headrick
Brandeis University

June 3, 2015
Closing the Entanglement Gap
KITP
(work in progress with Michael Freedman)

Holographic mutual information: Review

Ryu-Takayanagi ['06] formula:

$$
S(A)=\min _{m \sim A} \operatorname{area}(m)
$$

$m(A):=$ minimizer
(in this talk $4 G_{N}=\ln 2=1$)

Mutual information: $I(A: B):=S(A)+S(B)-S(A B)$
Measures total amount of correlation between $A \& B$

Properties:

1. Subadditivity: $\quad I(A: B) \geq 0$
2. Strong subadditivity [Headrick-Takayanagi '07]:

$$
I(A: B \mid C):=I(A: B C)-I(A: C) \geq 0
$$

(conditional MI)

3. Monogamy [Hayden-Headrick-Maloney '11]:

$$
I_{3}(A: B: C):=I(A: B)+I(A: C)-I(A: B C) \leq 0
$$

(tripartite information)
4. "Phase transitions" [Headrick '10]
$I(A: B)$

Note: $1 \& 2$ are general properties of MI , while $3 \& 4$ are special properties of RT

Interpretation?

Geometry of bulk encodes state of field theory
RT tells us something about that encoding
Do microstate bits of ρ_{A} "live" on $m(A)$?

Questions:

- Why does $m(A B)$ jump at phase transition, when $\rho_{A B}$ presumably changes continuously?
(Not a conventional exchange-of-dominant-macrostate phase transition [Headrick '13].)

- Recall information-theoretic meaning of MI

Classical: $I(A: B)$ counts \# of bits that are correlated (redundant) between A and B

$H(A \mid B):=S(A B)-S(B)$ (conditional entropy)
Quantum: Each entangled bit counts like 2 correlated bits $\quad \frac{1}{\sqrt{2}}\left(\left|\frac{1}{1}\right\rangle+\left|\begin{array}{l}0 \\ 0\end{array}\right\rangle\right)$
Can lead to $H(A \mid B)<0$

Conditional MI: $\quad I(A: B \mid C):=I(A: B C)-I(A: C)$

Why do differences between areas of surfaces-in different parts of space-give MI, conditional entropy, and conditional MI? What does holographic proof of SSA have to do with monotonicity of correlations?

To answer these questions, I will give a new formulation of RT

- Does not refer to minimal surfaces; they are demoted to a mere calculational device
- Suggests a new way to think about the connection between spacetime geometry and information

Max-flow min-cut

(Originally on graphs, in context of network theory; continuous version [Federer '74, Strang '83, Nozawa '90])
Consider a Riemannian manifold with boundary
Flow $v:=$ vector field s.t. $\nabla \cdot v=0,|v| \leq 1$
Equivalently, oriented threads (flow lines) with transverse density $=|v| \leq 1$
$A=$ subset of boundary
Max-flow min-cut theorem:

$$
\max _{v} \int_{A} v=\min _{m \sim A} \operatorname{area}(m)
$$

$v(A):=$ maximizer

Ryu-Takayanagi 2.0:

$$
\begin{aligned}
S(A) & =\max _{v} \int_{A} v \\
& =\max \# \text { of threads coming out of } A
\end{aligned}
$$

Facts about max flows:

1. $v(A)$ is far from unique

We will see that this "gauge freedom" is physically important
2. On $m(A), v(A)=$ unit normal-threads are maximally crowded
3. $v(A)$ changes continuously under continuous changes in A
4. Different flows for different boundary regions:
one cannot necessarily simultaneously maximize flux on A \& on B
However, for nested regions one can: there exists $v(A, A B)$ that maximizes $\int_{A} v \& \int_{A B} v$

Threads \& information

Example 1: $S(A)=S(B)=2, S(A B)=3 \Rightarrow I(A: B)=1$
Maximizing on $A B$, we can also maximize on either A or B

Lesson 1: Correlated bits are threads that can be moved (are redundant) between $A \& B$
Conditional entropy: $\quad H(A \mid B):=S(A B)-S(B)$

$$
\begin{aligned}
& =\int_{A B} v(B, A B)-\int_{B} v(B, A B) \\
& =\int_{A} v(B, A B) \\
& =\text { number of threads remaining on } A \text { when we "measure" } B
\end{aligned}
$$

Example 2: $S(A)=S(B)=2, S(A B)=1 \Rightarrow I(A: B)=3 ; H(A \mid B)=-1 \Rightarrow$ entanglement!
One thread leaving A must go to B, and vice versa!

Lesson 2: Entangled qubits are threads connecting $A \& B$ that switch direction; A measures B and vice versa.
Subadditivity is clear
Conditional MI: $\quad I(A: B \mid C)=H(A \mid C)-H(A \mid B C)$

$=\int_{A} v(C, A C)-\int_{A} v(B C, A B C)$
$=(\max$ on $A)-(\min$ on $A)$, while maximizing on $C \& A B C$
$=$ moveable between $A \& B$, while maximizing on $C \& A B C$
$=($ moveable between $A \& B C)-($ moveable between $A \& C)$
$=I(A: B C)-I(A: C)$

Strong subadditivity is clear
Exercise for reader: Find flow interpretation of other properties: Araki-Lieb, $S(A)=S\left(A^{c}\right)$ for pure states, ...

Open questions

- Flow-based proof/understanding of monogamy of MI?
- Higher-derivative corrections (e.g. Gauss-Bonnet)?
- Quantum corrections (perturbative \& non-perturbative)?
- Covariant holographic entanglement entropy [Hubeny-Rangamani-Takayanagi '07]:
- Maximin [Wall '12] \rightarrow maximax
- Fully covariant flow version of HRT?
- Can we understand the emergence of space from these threads? Is space a "string-net"?

