Propagation of entanglement in many-body systems

Hong Liu

Entanglement generation

Consider a many-body system in an un-entangled initial state:

How fast can entanglement be generated?

A measure:

$$\frac{dS_A}{dt}$$

depends on size of A, total number of d.o.f.,

Not meaningful to compare it across different systems

Relativistic systems: should be constrained by causality, how?

Plan

- 1. Insights from holography : hints of a measure
 - HL and J. Suh, Phys. Rev. Lett. 112, 011601 (2014)
 - HL and J. Suh, Phys. Rev. D 89, 066012 (2014)
- 2. An upper bound on entanglement growth in non-interacting systems
- 3. A model of entanglement growth in interacting systems

H. Casini, HL, M. Mezei, to appear

Thanks to Hubeny and Suh

Insights from Holography

Global quenches

- Start with a QFT in the ground state.
- 2. At t=0 in a very short time inject a uniform energy density
 - initial state homogeneous, isotropic, entanglement properties as vacuum
- 3. The system evolves to (thermal) equilibrium

The system is in a pure state throughout.

Typical point of A essentially un-entangled with outside s_{eq}: equilibrium entropy density

Essentially every point of A is entangled with outside

Full time evolution: very difficult question

d=2: CFTs (Calabrese-Cardy), Linear growth

d > 2: holography (for a class of strongly interaction systems)

Hubeny, Rangamani, Takayanagi: arXiv:0705.0016

Related work:

Abajo-Arrastia, Aparicio and Lopez, arXiv:1006.4090

Albash and Johnson, arXiv:1008.3027

Balasubramanian, Bernamonti, de Boer, Copland, Craps, Keski-Vakkuri, Muller, Schafer, Shigemori, Staessens arXiv:1012.4753, arXiv:1103.2683

Hartman and Maldacena arXiv:1303.1080

Hubeny and Maxfield arXiv: 1312.6887

v_E: dimension of velocity, characterized by final eq state.

Entanglement Tsunami

 $\Delta S_A(t) = v_E s_{\text{eq}} A_{\Sigma} t = s_{\text{eq}} (V_A - V_{A-v_E t})$

suggests a picture of "tsunami" wave of entanglement, moving inward from boundary

d.o.f. in the region covered by the wave is now entangled with those outside A

natural with evolution from a local Hamiltonian

Tsunami velocity

$$\Delta S_A(t) = v_E s_{eq} A_{\Sigma} t + \cdots$$

From gravity:

$$v_E \le v_E^{(S)} = \frac{(\eta - 1)^{\frac{1}{2}(\eta - 1)}}{\eta^{\frac{1}{2}\eta}} = \begin{cases} 1 & d = 2\\ \frac{\sqrt{3}}{2^{\frac{4}{3}}} = 0.687 & d = 3\\ \frac{\sqrt{2}}{3^{\frac{3}{4}}} = 0.620 & d = 4\\ \frac{1}{2} & d = \infty \end{cases}$$
$$\eta \equiv \frac{2(d - 1)}{d}$$

d=2: agree with previous Calabrese-Cardy's result

A measure of entanglement growth

$$\Re_A(t) \equiv \frac{1}{s_{\rm eq} A_{\Sigma}} \frac{dS_A}{dt}$$

(dimension: velocity)

can be compared among regions of different sizes, and systems of different number of d.o.f.

From gravity: after local equilibration

$$\mathfrak{R}_A \le v_E^{(S)}$$

Questions

Generality of linear growth?

How to relate $\mathfrak{R}_A, v_E\,$ directly to speed of light?

Significance of
$$v_E^{(S)} = \begin{cases} 1 & d = 2\\ \frac{\sqrt{3}}{2^{\frac{4}{3}}} = 0.687 & d = 3\\ \frac{\sqrt{2}}{3^{\frac{3}{4}}} = 0.620 & d = 4\\ \frac{1}{2} & d = \infty \end{cases}$$

Free theory? Not available

Calabrese-Cardy model

Energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically.

An upper bound for free propagation of entanglement

Setup

Each point is an independent source of local entanglement which subsequently spread at speed of light.

(intersection of lightcone from x with A at time t)

No interaction/interference among lightcones

For a region B on the lightcone from a point x, associate an entanglement measure $\mu[B]$:

entanglement entropy for B in the Hilbert space of the Light cone from x

Contribution from x: $\mu[L_A(ec{x},t)]$

$$S_A(t) = \int d^{d-1}x \,\mu[L_A(\vec{x}, t)]$$

Properties

 $\mu[B]$ should have all the properties of entanglement entropy:

 $\mu[B] = \mu[\bar{B}]$, Strong subadditivity condition, etc.

It does not change with time for B with fixed angular extension.

 $\lim_{B \to 0} \mu[B] = \Im_B \qquad \xi_B : \text{normalized volume for B} \quad \text{e.g. Page (1992)}$

Equilibrium value:

$$S_A(t = \infty) = sV_A$$
$$s_{eq} = s$$

Linear growth

Upper bound on entanglement propagation

Random pure state measure: $\mu_R |B| \equiv s \min(\xi_B, \xi_{\bar{B}})$ Strong sub-additivity condition $\mathcal{M}[B] \leq \mu_R[B]$ $\mu[B] + \mu[C \cup D] \ge \mu[C] + \mu[B \cup D]$ (C,D infinitesimal) $\mu[B \cup D] - \mu[B] \le s \, \xi_D$ В $v_E \le v_E^{\text{free}} \equiv 2 \int_0^1 dx \,\xi_{\text{cap}}(x)$ $\Re_A(t) < v_E^{\text{free}}$

Free propagation

$$\begin{aligned} \frac{dS_A}{dt} &\leq v_E^{\rm free} s_{\rm eq} A_{\Sigma} \\ v_E^{\rm free} &= \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}\Gamma(\frac{d}{2})} = \begin{cases} 1 & d=2 \\ \frac{2}{\pi} = 0.637 & d=3 \\ \frac{1}{2} & d=4 \\ \sqrt{\frac{2}{\pi d}} & d=\infty \end{cases} \\ v_E^{(S)} &= \begin{cases} 1 & d=2 & \text{In strongly} \\ \frac{\sqrt{3}}{2\frac{4}{3}} = 0.687 & d=3 & \text{systems, expression} \\ \frac{\sqrt{2}}{3\frac{4}{3}} = 0.620 & d=4 & \text{that from} \\ \frac{1}{2} & d=\infty & \text{at speed of } \end{cases} \end{aligned}$$

In strongly coupled systems, entanglement propagates faster than that from free particles at speed of light !

An interacting model

Quantum state of the system can no longer be described as a direct product of those resulting from each point at t=0.

We then face the standard difficulties of how to characterize the quantum state of an interacting many-body system.

Domain of dependence

Scatterings in this region amounts to unitary transformations in $\mathcal{H}_{ar{A}}$

Will not affect S_{Δ} (t)

Green-shaded region: $\mathcal{D}_{-}(A)$

Scatterings in this region amounts to unitary transformations in \mathcal{H}_A

Will not affect S_A (t) either

Only particles from M₁, M₂ and scatterings in white regions relevant!

Only particles from M₁, M₂ and scatterings in white regions relevant!

A particle from M_1 and a particle from M_2 do not have effective scatterings. So M_1 and M_2 can be treated independently.

In a strongly coupled theory particles within M_1 scatter with one another many times before reaching A.

Appears natural to apply random pure state measure to the full Hilbert space of all particles in M_1 (similarly with M₂):

$$S_A = s \min(N_A(t), N_{\bar{A}}(t))$$

 N_A : number of particles from M_1 falling in A

General formulation

$$M(t) \equiv \mathcal{M} - (\mathcal{D}_{-}(A) \cap \mathcal{M}) - (\mathcal{D}_{-}(\bar{A}) \cap \mathcal{M})$$

 \mathcal{M} : spatial manifold at t=0

$$M(t) = \sum_{i} M_{i}$$
$$S_{A}(t) = \nu_{eq} \sum_{i} \min\left(\int_{M_{i}(t)} n_{A}(x,t), \int_{M_{i}(t)} n_{\bar{A}}(x,t)\right)$$

Always larger than free propagation results derived earlier. Likely an upper limit for interacting theories.

Results

d=2:

One interval: $v_E = 1$

Two intervals: precisely recover holographic results

Free propagation: not

Asplund and Bernamonti Leichenauer and Moosa

Three intervals: generally same, but can be larger than holographic results for certain time intervals

Appear to be the same as a recent proposal of Leichenauer and Moosa in 1505.04225.

d >2: v_E = 1

However, this might be an unachievable upper bound.

Thank You