Entanglement Negativity

in Conformal Field Theories

Erik Tonni SISSA
P. Calabrese, J. Cardy and E.T.
C. De Nobili, A. Coser and E.T.
A. Coser, E.T. and P. Calabrese
[1206.3092] PRL
[1210.5359] JSTAT
[1408.3043] JPA
[1501.04311] JSTAT (to appear)
[1503.09114]

Closing the entanglement gap:
Quantum information, quantum matter and quantum fields KITP, June 2015

Outline

\rightarrow Introduction \& some motivations
\rightarrow Entanglement in 2D CFT:
\bigcirc Entanglement negativity: definitions and replica limit
\bigcirc Entanglement entropies for disjoint intervals
\bigcirc Entanglement negativity for adjacent and disjoint intervals
\bigcirc Entanglement negativity at finite temperature

- Partial transpose in the XY spin chain
\rightarrow Conclusions \& open issues

Mutual Information \& Entanglement Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

Entanglement entropy

\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \rho_{A_{1} \cup A_{2}}$ is mixed

$\square S_{A_{1} \cup A_{2}}$: entanglement between $A_{1} \cup A_{2}$ and B
Entanglement between A_{1} and A_{2} ?
\square The mutual information $S_{A_{1}}+S_{A_{2}}-S_{A_{1} \cup A_{2}}$ gives an upper bound
\square A computable measure of the entanglement is the logarithmic negativity

Why disjoint intervals?

\square One interval on the infinite line at $T=0$
[Holzhey, Larsen, Wilczek, (1994)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

\square Two intervals A_{1} and $A_{2}: \operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ for small intervals w.r.t. to other characteristc lengths of the system

$$
\operatorname{Tr} \rho_{A}^{n}=c_{n}^{2}\left(\ell_{1} \ell_{2}\right)^{-c / 6(n-1 / n)} \sum_{\left\{k_{j}\right\}}\left(\frac{\ell_{1} \ell_{2}}{n^{2} r^{2}}\right)^{\sum_{j}\left(\Delta_{j}+\bar{\Delta}_{j}\right)}\left\langle\prod_{j=1}^{n} \phi_{k_{j}}\left(e^{2 \pi i j / n}\right)\right\rangle_{\mathbf{C}}^{2}
$$

$\operatorname{Tr} \rho_{A}^{n}$ for disjoint intervals contains all the data of the CFT (conformal dimensions and OPE coefficients)
\square Generalization to higher dimensions [Cardy, (2013)]

Entanglement between disjoint regions: Negativity

$\square \quad \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state

$\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle$
[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Plenio, (2005)] [Vidal, Werner, (2002)]
\square Trace norm $\quad\left|\left|\rho^{T_{2}} \|=\operatorname{Tr}\right| \rho^{T_{2}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i} \begin{aligned} & \lambda_{j} \text { eigenvalues of } \rho^{T_{2}} \\ & \operatorname{Tr} \rho^{T_{2}}=1\end{aligned}$

Logarithmic negativity

$$
\mathcal{E}_{A_{2}}=\ln \left\|\rho^{T_{2}}\right\|=\ln \operatorname{Tr}\left|\rho^{T_{2}}\right|
$$

\square Bipartite system $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ in any state $\rho \quad \longrightarrow \quad \mathcal{E}_{1}=\mathcal{E}_{2}$

Replica approach to Negativity

\square A parity effect for $\underbrace{\left.\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\right)} \begin{array}{r}\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\end{array}=\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}}{ }^{T_{2}})^{n_{o}}=\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}$
\square Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

$$
\left.\mathcal{E}=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]\right) \quad \lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

\square Pure states $\rho=|\Psi\rangle\langle\Psi|$ and bipartite $\operatorname{system}\left(\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

\square Taking $n_{e} \rightarrow 1$ we have

$$
\mathcal{E}=2 \log \operatorname{Tr} \rho_{2}^{1 / 2}
$$

(Renyi entropy $1 / 2$)

2D CFT: Renyi entropies as correlation functions

\square One interval $(N=1)$: the Renyi entropies can be written as
a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]

\square Twist fields have been largely studied in the 1980s
[Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)]
[Knizhnik, (1987)] [Bershadsky, Radul, (1987)]
\square Integrable field theories [Cardy, Castro-Alvaredo, Doyon, (2008)] [Doyon, (2008)]

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

$$
\begin{aligned}
& \cdots \begin{array}{ccccccccc}
u_{1}{ }^{A_{1}} & v_{1} & u_{2}{ }^{A_{2}} & & v_{2} & \cdots & u_{N-1}{ }^{A_{N-1}} v_{N-1} & u_{N}{ }^{A_{N}} v_{N} \\
\hline \mathcal{T}_{n} & \overline{\mathcal{T}}_{n} & \mathcal{T}_{n} & \overline{\mathcal{T}}_{n} & \cdots & \mathcal{T}_{n} & \overline{\mathcal{T}}_{n} & \mathcal{T}_{n} & \overline{\mathcal{T}}_{n}
\end{array}-
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}=\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{i}\right) \overline{\mathcal{T}}_{n}\left(v_{i}\right)\right\rangle=c_{n}^{N}\left|\frac{\prod_{i<j}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right)}{\prod_{i, j}\left(v_{j}-u_{i}\right)}\right|^{2 \Delta_{n}} \mathcal{F}_{N, n}(\stackrel{\boldsymbol{x}}{\boldsymbol{v}})
\end{aligned}
$$

$\square \mathcal{Z}_{N, n}$ partition function of $\mathcal{R}_{N, n}$, a particular Riemann surface of genus $g=(N-1)(n-1)$ obtained through replication

N intervals: free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is $y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad \begin{aligned} & g=(N-1)(n-1) \\ & \text { [Enolski, Grava, (2003)] }\end{aligned}$
\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]
Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

\square Free compactified boson $\left(\eta \propto R^{2}\right)$

$$
\mathcal{F}_{N, n}(\boldsymbol{x})=\frac{\Theta\left(\mathbf{0} \mid T_{\eta}\right)}{|\Theta(\mathbf{0} \mid \tau)|^{2}} \quad T_{\eta}=\left(\begin{array}{cc}
\mathrm{i} \eta \mathcal{I} & \mathcal{R} \\
\mathcal{R} & \mathrm{i} \mathcal{I} / \eta
\end{array}\right) \quad \begin{gathered}
\tau=\mathcal{R}+\mathrm{i} \mathcal{I} \\
\text { period matrix } \\
(g \times g)
\end{gathered}
$$

\square Ising model

$$
\mathcal{F}_{N, n}^{\text {Ising }}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{e}}|\Theta[\boldsymbol{e}](\mathbf{0} \mid \tau)|}{2^{g}|\Theta(\mathbf{0} \mid \tau)|}
$$

Nasty n dependence
\square Two intervals case: [Caraglio, Gliozzi, (2008)] [Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)] [Alba, Tagliacozzo, Calabrese, (2010), (2011)]

Two disjoint intervals

\square Mutual information in XXZ model
(exact diagonalization) [Furukawa, Pasquier, Shiraishi, (2009)]

Rational interpolation: an example

\square Mutual information in critical Ising chain
(Tree Tensor Network) [Alba, Tagliacozzo, Calabrese, (2010)]

\square Rational interpolation:
[De Nobili, Coser, E.T., (2015)]

$$
W_{(p, q)}^{(n)}(x) \equiv \frac{a_{0}(x)+a_{1}(x) n+\cdots+a_{p}(x) n^{p}}{b_{0}(x)+b_{1}(x) n+\cdots+b_{q}(x) n^{q}}
$$

Method first employed for Riemann theta functions in $2+1$ dimensions [Agón, Headrick, Jafferis, Kasko, (2014)]

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	
B	u_{1}	A_{1}	$\bar{v}_{1} B$	u_{2}	A_{2}	v_{2}

$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$
$\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	$\overline{\mathcal{T}}_{n}$		\mathcal{T}_{n}	
B	u_{1}	A_{1}	v_{1}	B	u_{2}	A_{2}	v_{2}

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \overline{\mathcal{T}}_{n}\left(u_{2}\right) \mathcal{T}_{n}\left(v_{2}\right)\right\rangle$
\square The partial transposition exchanges \mathcal{T}_{n} and $\overline{\mathcal{T}}_{n}$
[Calabrese, Cardy, E.T., (2012)]

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$$
\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}
\text { exchange } \\
\text { two twist fields }
\end{gathered}
$$

$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling

Partial Transpose in 2D CFT: two adjacent intervals

\square Three point function

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

$$
\left\{\begin{array}{l}
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto\left(\ell_{1} \ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)}\left(\ell_{1}+\ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}+\frac{1}{n_{e}}\right)} \\
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}} \propto\left(\ell_{1} \ell_{2}\left(\ell_{1}+\ell_{2}\right)\right)^{-\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)}
\end{array}\right.
$$

$$
\mathcal{E}=\frac{c}{4} \ln \left(\frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}\right)+\text { const }
$$

Partial Transpose in 2D CFT: two disjoint intervals

$\square \operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ is obtained from $\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ by exchanging two twist fields

$$
\begin{gathered}
\mathcal{G}_{n}(y)=(1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_{n}\left(\frac{y}{y-1}\right) \\
\mathcal{E}(y)=\lim _{n_{e} \rightarrow 1} \mathcal{G}_{n_{e}}(y)=\lim _{n_{e} \rightarrow 1}\left[\mathcal{F}_{n}\left(\frac{y}{y-1}\right)\right]
\end{gathered}
$$

Two adjacent intervals: harmonic chain \& Ising model

\square Critical periodic harmonic chain
Finite system: $\ell \longrightarrow(L / \pi) \sin (\pi \ell / L)$

$$
r_{n}=\ln \frac{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}=\ell}}\right)^{n}}{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}=L / 4}}\right)^{n}}
$$

$$
\frac{1}{4} \log \frac{\sin \left(\pi \ell_{1} / L\right) \sin \left(\pi \ell_{2} / L\right)}{\sin \left(\pi\left[\ell_{1}+\ell_{2}\right] / L\right)}+\mathrm{cnst}
$$

\square Ising model:
Monte-Carlo analysis [Alba, (2013)]

Tree Tensor Network [Calabrese, Tagliacozzo, E.T., (2013)]

Two disjoint intervals: periodic harmonic chains

\square Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains
[Wichterich, Molina-Vilaplana, Bose, (2009)]
[Marcovitch, Retzker, Plenio, Reznik, (2009)]
\square Non compact free boson [Calabrese, Cardy, E.T., (2012)]

$$
R_{n}=\frac{\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}}{\operatorname{Tr} \rho_{A}^{n}} \quad \quad R_{n}=\left[\frac{(1-x)^{\frac{2}{3}\left(n-\frac{1}{n}\right)} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(x) F_{\frac{k}{n}}(1-x)}{\prod_{k=1}^{n-1} \operatorname{Re}\left(F_{\frac{k}{n}}\left(\frac{x}{x-1}\right) \bar{F}_{\frac{k}{n}}\left(\frac{1}{1-x}\right)\right)}\right]^{\frac{1}{2}}
$$

[De Nobili, Coser, E.T., (2015)]

Two disjoint intervals: periodic harmonic chains

\square Analytic continuation for $x \sim 1$ [Calabrese, Cardy, E.T., (2012)]

$$
\mathcal{E}=-\frac{1}{4} \log (1-x)+\log K(x)+\mathrm{cnst}
$$

- Analytic continuation $n_{e} \rightarrow 1$ for $0<x<1$ not known
$\mathcal{E}(x)$ for $x \sim 0$ vanishes faster than any power
\square Numerical extrapolations (rational interpolation method) [De Nobili, Coser, E.T., (2015)]

Two disjoint intervals: Ising model

[Alba, (2013)] [Calabrese, Tagliacozzo, E.T., (2013)]
$\square \quad \mathrm{CFT} \quad \mathcal{G}_{n}(y)=(1-y)^{(n-1 / n) / 6} \frac{\sum_{\mathbf{e}}\left|\Theta[\mathbf{e}]\left(\mathbf{0} \left\lvert\, \tau\left(\frac{y}{y-1}\right)\right.\right)\right|}{2^{n-1} \prod_{k=1}^{n-1}\left|F_{k / n}\left(\frac{y}{y-1}\right)\right|^{1 / 2}} \quad 0<y<1$
\square Tree tensor network:

[Calabrese, Tagliacozzo, E.T., (2013)]

One interval at finite temperature: a naive approach

\square Logarithmic negativity \mathcal{E} of one interval at finite $T=1 / \beta$
\square A naive approach: compute $\left\langle\mathcal{T}_{n}^{2}(u) \overline{\mathcal{T}}_{n}^{2}(v)\right\rangle_{\beta}$ through the conformal map relating the cylinder to the complex plane

$$
\mathcal{E}_{\text {naive }}=\frac{c}{2} \ln \left(\frac{\beta}{\pi a} \sinh \frac{\pi \ell}{\beta}\right)+2 \ln c_{1 / 2}
$$

Problems:
The Rényi entropy $n=1 / 2$ is not an entanglement measure at finite T
$\mathcal{E}_{\text {naive }}$ is an increasing function of T, linearly divergent at high T
Entanglement should decrease as the system becomes classical

One interval at finite temperature in the infinite line

(connection to the $(j+1)$-th cylinder following the arrows)

Single copy of $\rho_{\beta}^{T_{A}} \Longrightarrow \operatorname{Tr}\left(\rho_{\beta}^{T_{A}}\right)^{n}$

Deformation of the cut along B

A cut remains connecting consecutive copies
\Longrightarrow No factorization for even n
(The double arrow indicates the connection to the $(j+2)$-th copy)

Deforming the cut at zero temperature

Single copy of $(|\psi\rangle\langle\psi|)^{T_{A}} \Longrightarrow \operatorname{Tr}\left[(|\psi\rangle\langle\psi|)^{T_{A}}\right]^{n}$

Deformation of the cut along B

The cut connecting consecutive copies shrinks to a point Only the connection to the $j \pm 2$ copies along A remains \Longrightarrow Factorization for even n

One interval at finite temperature in the infinite line

Two auxiliary twist fields at $\operatorname{Re}(w)= \pm L$, then $L \rightarrow \infty$

$$
\mathcal{E}_{A}=\lim _{L \rightarrow \infty} \lim _{n_{e} \rightarrow 1} \ln \left\langle\mathcal{T}_{n_{e}}(-L) \overline{\mathcal{T}}_{n_{e}}^{2}(-\ell) \mathcal{T}_{n_{e}}^{2}(0) \overline{\mathcal{T}}_{n_{e}}(L)\right\rangle_{\beta}
$$

\square Conformal map the cylinder into the plane $z=e^{2 \pi w / \beta}$

$$
\begin{array}{ll}
\left\langle\mathcal{T}_{n}\left(z_{1}\right) \overline{\mathcal{T}}_{n}^{2}\left(z_{2}\right) \mathcal{T}_{n}^{2}\left(z_{3}\right) \overline{\mathcal{T}}_{n}\left(z_{4}\right)\right\rangle=\frac{c_{n} c_{n}^{(2)}}{z_{14}^{2 \Delta_{n}} z_{23}^{2 \Delta_{n}^{(2)}}} \frac{\mathcal{F}_{n}(x)}{x^{\Delta_{n}^{(2)}}} & \mathcal{F}_{n}(1)=1 \quad \mathcal{F}_{n}(0)=\frac{C_{\mathcal{T}_{n}}^{2} \overline{\mathcal{T}}_{n}^{2} \overline{\mathcal{T}}_{n}}{c_{n}^{(2)}} \\
x \rightarrow e^{-2 \pi \ell / \beta} \quad \text { when } \quad L \rightarrow \infty & f(x) \equiv \lim _{n_{e} \rightarrow 1} \ln \left[\mathcal{F}_{n_{e}}(x)\right]
\end{array}
$$

$$
\mathcal{E}_{A}=\frac{c}{2} \ln \left[\frac{\beta}{\pi a} \sinh \left(\frac{\pi \ell}{\beta}\right)\right]-\frac{\pi c \ell}{2 \beta}+f\left(e^{-2 \pi \ell / \beta}\right)+2 \ln c_{1 / 2}
$$

$\rightarrow \mathcal{E}_{A}=\mathcal{E}_{B}$
$\rightarrow \mathcal{E}$ depends on the full operator content of the model
\rightarrow large T linear divergence of $\mathcal{E}_{\text {naive }}$ is canceled
\rightarrow semi infinite systems $\operatorname{Re}(w)<0(\mathrm{BCFT})$ have been also studied

XY spin chain: two disjoint blocks

\square XY spin chain with periodic b.c.

$$
H_{X Y}=-\frac{1}{2} \sum_{j=1}^{L}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}+h \sigma_{j}^{z}\right)
$$

Ising model in a transverse field for $\gamma=1, \mathrm{XX}$ spin chain for $\gamma=0$
\square Jordan-Wigner transformation

$$
c_{j}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}-\mathrm{i} \sigma_{j}^{z}}{2} \quad c_{j}^{\dagger}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}+\mathrm{i} \sigma_{j}^{z}}{2}
$$ then introduce Majorana fermions $a_{2 j}=c_{j}+c_{j}^{\dagger}$ and $a_{2 j-1}=\mathrm{i}\left(c_{j}-c_{j}^{\dagger}\right)$.

\square Two disjoint blocks

$$
\begin{array}{lllll}
B_{2} & A_{1} & B_{1} & A_{2} & B_{2}
\end{array}
$$

\rightarrow The string $P_{B_{1}} \equiv \prod_{j \in B_{1}}\left(\mathrm{i} a_{2 j-1} a_{2 j}\right)$ enters in a crucial way [Alba, Tagliacozzo, Calabrese, (2010)] [Igloi, Peschel, (2010)] [Fagotti, Calabrese, (2010)]
\rightarrow Rényi entropies can be written through 4 fermionic Gaussian operators [Fagotti, Calabrese, (2010)]

$$
\operatorname{Tr} \rho_{A}^{n}=\operatorname{Tr}\left(\frac{\rho_{A}^{1}+P_{A_{2}} \rho_{A}^{1} P_{A_{2}}}{2}+\left\langle P_{B_{1}}\right\rangle \frac{\rho_{A}^{B_{1}}-P_{A_{2}} \rho_{A}^{B_{1}} P_{A_{2}}}{2}\right)^{n} \quad \rho_{A}^{B_{1}} \equiv \frac{\operatorname{Tr}_{B}\left(P_{B_{1}}|\Psi\rangle\langle\Psi|\right)}{\left\langle P_{B_{1}}\right\rangle}
$$

XY spin chain: partial transpose of two disjoint blocks

\square Free fermion: $\rho_{A}^{T_{2}}$ is a sum of 2 fermionic Gaussian operators [Eisler, Zimboras, 1502.01369]
\square XY spin chain: $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ can be written in terms of 4 fermionic Gaussian operators
[Coser, E.T., Calabrese, 1503.09114]

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\operatorname{Tr}\left(\frac{\tilde{\rho}_{A}^{1}+P_{A_{2}} \tilde{\rho}_{A}^{1} P_{A_{2}}}{2}+\left\langle P_{B_{1}}\right\rangle \frac{\tilde{\rho}_{A}^{B_{1}}-P_{A_{2}} \tilde{\rho}_{A}^{B_{1}} P_{A_{2}}}{2 \mathrm{i}}\right)^{n}
$$

\square CFT predictions of $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ have been checked for:
Ising chain, XX chain and tight binding model at half filling (free fermion)
E.g.: free fermion
$\tilde{\tau}=\tau(x /(x-1))$
$\mathcal{G}_{n}(x)=\frac{(1-x)^{\frac{1}{3}\left(n-\frac{1}{n}\right)}}{2^{n-1} \Theta(\tilde{\tau})^{2}} \sum_{\boldsymbol{\delta}} q_{n}(\boldsymbol{\delta}) \Theta\left[\begin{array}{l}\mathbf{0} \\ \boldsymbol{\delta}\end{array}\right](\tilde{\tau})^{2}$
$q_{n}(\boldsymbol{\delta})$ known expression.

Conclusions \& open issues

\square Entanglement for mixed states.
Entanglement negativity in QFT ($1+1 \mathrm{CFTs}$): $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E}
\rightarrow free boson, Ising model, free fermion
\rightarrow finite temperature
\square Negativity. Some recent analysis:
\rightarrow topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]
\rightarrow results for holographic models [Rangamani, Rota, (2014)] [Kulaxizi, Parnachev, Policastro, (2014)]
\rightarrow evolution after a quantum quench [Eisler, Zimboras, (2014)]
[Coser, E.T., Calabrese, (2014)]
[Hoogeveen, Doyon, (2014)]
[Wen, Chang, Ryu, (2015)]
\square Some open issues:
Analytic continuations
Higher dimensions
\Rightarrow Interactions
Negativity in AdS/CFT

