Entanglement Hamiltonian and spectra from quantum Monte Carlo simulations of interacting fermions.

Fakher F. Assaad (KITP, June 23rd 2015)

Organization

- > Introduction: Entanglement Hamiltonian and spectra for free electrons.
- ➢ QMC

Weak coupling approaches \rightarrow Gaussian representation of reduced density matrix Strong coupling approaches \rightarrow Replica

Conclusions

F. Parisen Toldin

Discussions with Tarun Grover

FFA, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121 (2014) FFA, PRB 91, 125146 (2015)

Entanglement Hamiltonian for non-interacting systems

I. Peschel, Journal of Physics A 36, L205 (2003)

- L. Fidkowski. Phys. Rev. Lett., 104, 130502, (2010)
- A. M. Turner, Y. Zhang, and A. Vishwanath Phys. Rev. B, 82, 241102, (2010)

$$\hat{\rho}_{A} = \operatorname{Tr}_{B} \hat{\rho} = e^{-\hat{H}_{E}}, \quad \hat{\rho} = \frac{e^{-\beta\hat{H}_{0}}}{Z}$$
$$\hat{\rho}_{A} = \det\left[1 - G_{A}\right] e^{-\hat{\mathbf{a}}^{\dagger} \ln\left[G_{A}^{-1} - 1\right]\hat{\mathbf{a}}}$$

- G_{A} Single particle equal time Green function matrix in \mathcal{H}_{A}
- $\forall \hat{O} \in \mathcal{H}_{A}$ Wick's theorem leads to $\operatorname{Tr}_{A} \hat{\rho}_{A} \hat{O} = \operatorname{Tr} \hat{\rho} \hat{O}$ since

$$\operatorname{Tr}_{A}\left[\hat{\rho}_{A} \ \hat{a}_{x} \hat{a}_{y}^{\dagger}\right] \stackrel{!}{=} \operatorname{Tr}\left[\hat{\rho} \hat{a}_{x} \hat{a}_{y}^{\dagger}\right] = \left[G_{A}\right]_{xy}$$

 $\frac{1}{2} - G_A = \frac{1}{2} \tanh(H_E / 2)$

Insulating states. Band flattening.

 $\frac{1}{2}$ - G and H₀ are adiabatically connected → Have the same topological properties

The Rindler Hamiltoninan

$$\langle \Psi_0 | \phi_B \phi_A \rangle = \lim_{B \to \infty} \langle \Psi_T | e^{-\beta \hat{H}} | \phi_B \phi_A \rangle = \langle \phi_B | e^{-\pi \hat{H}_R} | \phi_A \rangle$$
 Lorentz invariance required!

Detecting topological states with entanglement spectrum.

Entanglement spectrum for non-interacting topological insulators.

Entanglement spectrum for non-interacting topological insulators.

Entanglement Hamiltonian and spectra from quantum Monte Carlo simulations of interacting fermions.

Fakher F. Assaad (KITP, June 23rd 2015)

Organization

- > Introduction: Entanglement Hamiltonian and spectra for free electrons.
 - QMC Weak coupling approaches \rightarrow Gaussian representation of reduced density matrix

Strong coupling approaches \rightarrow Replica

Conclusions

F. Parisen Toldin

T. Lang

FFA, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121 (2014) FFA, PRB 91, 125146 (2015)

Measuring observables.

$$\frac{\operatorname{Tr}\left[e^{-\beta\hat{H}}\hat{c}_{x}^{\dagger}\hat{c}_{y}\right]}{\operatorname{Tr}e^{-\beta\hat{H}}} = \int D\Phi P(\Phi) G_{x,y}(\Phi) \qquad P(\Phi) = \frac{e^{-S(\Phi)}}{\int D\Phi e^{-S(\Phi)}}, \qquad G(\Phi) = (1+B_{L_{\tau}}\cdots B_{1})^{-1}$$

Wicks theorem holds for a given field configuration \rightarrow Any equal time observable can be computed from G

A different way of writing Wick's theorem. T. Grover Phys. Rev. Lett., 111, 130402, (2013).

$$\hat{\rho} \equiv \frac{e^{-\beta\hat{H}}}{Z} = \int d\Phi P(\Phi)\hat{\rho}(\Phi), \qquad \hat{\rho}(\Phi) = \det\left[1 - G(\Phi)\right]e^{-\hat{c}^{\dagger}\ln\left[G^{-1}(\Phi) - 1\right]\hat{c}}$$

$$\rightarrow \int d\Phi P(\Phi) \operatorname{Tr}\left[\hat{\rho}(\Phi)\hat{O}\right] = \left\langle \hat{O} \right\rangle$$

For all equal time observables.

Entanglement Hamiltonian

T. Grover Phys. Rev. Lett., 111, 130402, (2013).

<u>1D Hubbard model @ U/t = 3, <n>=1</u>

$$H_{E} = \sum_{i,n,\sigma} -t_{i,i+n} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+n,\sigma} + \hat{c}_{i+n,\sigma}^{\dagger} \hat{c}_{i,\sigma} \right) + \sum_{i,n} V_{i,i+n} \hat{n}_{i} \hat{n}_{i+n} + \sum_{i,n} \frac{-J_{i,i+n}}{4} \left(D_{i,i+n}^{\dagger} D_{i,i+n} + D_{i,i+n} D_{i,i+n}^{\dagger} \right) + \cdots$$

Entanglement spectrum

F. F. Assaad, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121, (2014)

$$\left\langle a_{x}^{\dagger}(\tau)a_{y}\right\rangle = \frac{\mathrm{Tr}\left[e^{-(\beta-\tau)H}a_{x}^{\dagger}e^{-\tau H}a_{y}\right]}{\mathrm{Tr}\left[e^{-\beta H}\right]} \rightarrow \left\langle a_{x}^{\dagger}(\tau)a_{x}\right\rangle = \int d\omega \; \frac{e^{-\tau\omega}}{1+e^{-\beta\omega}}A(x,\omega)$$

$$A(x,\omega) = \frac{1}{Z}\sum_{n,m} \left(e^{-\beta E_{n}} + e^{-\beta E_{m}}\right) \left| \left\langle n \middle| a_{x}^{\dagger} \middle| m \right\rangle \right|^{2} \delta\left(\omega - E_{m} + E_{n}\right)$$

$$\hat{\rho}_{A} = e^{-\hat{H}_{E}}$$

$$\left\langle a_{x}^{\dagger}(\tau_{E})a_{y}\right\rangle_{E} = \frac{\mathrm{Tr}\left[\hat{\rho}_{A}^{\ n-\tau_{E}}a_{x}^{\dagger}\hat{\rho}_{A}^{\ \tau_{E}}a_{y}\right]}{\mathrm{Tr}\left[\hat{\rho}_{A}^{\ n}\right]} \rightarrow \left\langle a_{x}^{\dagger}(\tau_{E})a_{x}\right\rangle_{E} = \int d\omega \; \frac{e^{-\tau_{E}\omega}}{1+e^{-n\omega}}A^{E}(x,\omega)$$

Note: n, $\tau_{\rm E}$ are natural numbers \rightarrow restricted to low energy sector of the entanglement spectrum.

Entanglement spectrum

F. F. Assaad, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121, (2014)

Example: Single particle entanglement spectral function for dimerized Kane-Mele Hubbard model.

Entanglement spectrum

F. F. Assaad, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121, (2014)

Example: Single particle entanglement spectral function for dimerized Kane-Mele Hubbard model. t'_c/t Trivial Topological ť/t Dimerization along the δ_2 direction $A_{1,1}^{E}(k,\omega) @ n = 8$ t'/t=2.0 t'/t=1.5 $U/t = 2, \lambda/t = 0.2$ 0 0 $\pi/2$ $\pi/2$ $W_{\rm A} \stackrel{|}{=} 4$ А k k В π π δ_2 δ_1 $\pi/2$ $\pi/2$ @U/t=2: 1.95 < t'_c/t < 2 0 0 T. C. Lang, A. M. Essin, V. Gurarie, and S. Wessel, -2 2 Phys. Rev. B 87, 205101 (2013). -4 0 4 -2 0 2 4 ω/t ω/t

Entanglement Hamiltonian and spectra from quantum Monte Carlo simulations of interacting fermions.

Fakher F. Assaad (KITP, June 23rd 2015)

Organization

- > Introduction: Entanglement Hamiltonian and spectra for free electrons.
- > QMC

Weak coupling approaches \rightarrow Gaussian representation of reduced density matrix

Strong coupling approaches \rightarrow Replica

Conclusions

F. Parisen Toldin

T. Lang

FFA, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121 (2014) FFA, PRB 91, 125146 (2015)

Entanglement spectrum for strongly correlated electrons

M. B. Hastings, I. Gonzalez, A. B. Kallin, and R. G. Melko, Phys. Rev. Lett, 157201, (2010). P. Broecker and S. Trebst. JSTAT, P08015, (2014).

Replica method: Hilbert space

$$\mathcal{H}_{\mathrm{tot}} = \mathcal{H}_A \otimes \mathcal{H}_B^{(1)} \otimes \mathcal{H}_B^{(2)} \cdots \mathcal{H}_B^{(n)}$$

Time dependent Hamiltonian, $0 < \tau < n\beta$

$$\hat{H}(\tau) = \sum_{r=1}^{n} \Theta \left[\tau - (r-1)\beta \right] \Theta \left[r\beta - \tau \right] \hat{H}^{(r)}.$$

 $\hat{H}^{(r)}$ Hamiltonian in Hilbert space $\,\mathcal{H}_A\otimes\mathcal{H}_B^{(r)}$

FFA, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121 (2014), FFA, PRB 91, 125146 (2015).

Entanglement spectrum for strongly correlated electrons

M. B. Hastings, I. Gonzalez, A. B. Kallin, and R. G. Melko, Phys. Rev. Lett, 157201, (2010).

 $0 < \tau < n\beta$

P. Broecker and S. Trebst. JSTAT, P08015, (2014). \mathcal{T} n = 4Replica method: Hilbert space 4β $\mathcal{H}_{\text{tot}} = \mathcal{H}_A \otimes \mathcal{H}_B^{(1)} \otimes \mathcal{H}_B^{(2)} \cdots \mathcal{H}_B^{(n)}$ B Α 3β B⁽³⁾ A Time dependent Hamiltonian, 2β B⁽²⁾ $\hat{H}(\tau) = \sum \Theta \left[\tau - (r-1)\beta\right] \Theta \left[r\beta - \tau\right] \hat{H}^{(r)}.$ А В **B**⁽¹⁾ Α $\hat{H}^{(r)}$ Hamiltonian in Hilbert space $\,\mathcal{H}_A\otimes\mathcal{H}_B^{(r)}$ $\mathcal{H}_{A} \otimes \mathcal{H}_{P(1)} \otimes \mathcal{H}_{P(2)} \otimes \mathcal{H}_{P(3)} \otimes \mathcal{H}_{P(4)}$ $\frac{\mathrm{T}r_{\mathcal{H}_{tot}}\left[\hat{U}(n\beta,\tau_{E}\beta)\hat{O}^{\dagger}\hat{U}(\tau_{E}\beta,0)\hat{O}\right]}{\mathrm{T}r_{\mathcal{H}_{tot}}\left[\hat{U}(n\beta,0)\right]} = \frac{\mathrm{T}r_{\mathcal{H}_{A}}\left[e^{-(n-\tau_{E})\hat{H}_{E}}\hat{O}^{\dagger}e^{-\tau_{E}\hat{H}_{E}}\hat{O}\right]}{\mathrm{T}r_{\mathcal{H}_{A}}\left[e^{-n\hat{H}_{E}}\right]}$

 \rightarrow One can study equal time and dynamical properties of the entanglement Hamiltonian

FFA, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121 (2014), FFA, PRB 91, 125146 (2015).

Single-particle spectrum of the entanglement Hamiltonian $W_A = 16, \beta t = 4, n = 8$ 12×12, $\lambda/t = 0.2$ 8 Magnetic Insulator (a)U/t = 4(b)U/t = 5(c)U/t = 6← xyz AFM xy AFM 6 0 U/t $\pi/2$ $A_{1,1}^E(k,\omega) \\ {}_{\mathfrak{A}}$ 2 ← Semimetal Quantum Spin Hall Insulator 0 0.0 0.10.2 λ/t $\pi/2$ 0 $\overline{\omega' t}^{0}$ 1 ω^{0}/t^{-1} 2 $\stackrel{\scriptscriptstyle 0}{\omega/t}$ 2 2 3 -2 -1 3 -2 -1 3 -3 -2 -1 $\frac{\mathrm{T}r_{\mathcal{H}_{A}}\left[e^{-(n-\tau_{E})\hat{H}_{E}}\hat{a}_{k,m}^{\dagger}e^{-\tau_{E}\hat{H}_{E}}\hat{a}_{k,m'}\right]}{\mathrm{T}r_{\mathcal{H}_{A}}\left[e^{-n\hat{H}_{E}}\right]}$ $W_{\rm A} \stackrel{\downarrow}{=} 4$ А k: translation symmetry in a₁, m: orbital index across partition A В δ_2 δ_1 δ_3 Wick rotation (Stochastic MaxEnt) to produce spectral function a.

Summary

Part I Weak coupling methods. Direct calculation of entanglement Hamiltonian (cumulant expansion)

