Entanglement Hamiltonian and spectra from quantum Monte Carlo simulations of interacting fermions.

Fakher F. Assaad (KITP, June 23rd 2015)

Organization
> Introduction: Entanglement Hamiltonian and spectra for free electrons.
> QMC
Weak coupling approaches \rightarrow Gaussian representation of reduced density matrix
Strong coupling approaches \rightarrow Replica
> Conclusions

T. Lang

Discussions with Tarun Grover
F. Parisen Toldin

Julius-Maximilians
UNIVERSITÄT WÜRZBURG

Partitioning $\mathcal{H}=\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}$

I. Peschel, Journal of Physics A 36, L205 (2003)
L. Fidkowski. Phys. Rev. Lett., 104, 130502, (2010)
A. M. Turner, Y. Zhang, and A. Vishwanath

Phys. Rev. B, 82, 241102, (2010)
$\hat{\rho}_{A}=\operatorname{Tr}_{B} \hat{\rho}=e^{-\hat{H}_{E}}, \quad \hat{\rho}=\frac{e^{-\beta \hat{\beta}} \hat{H}_{O}}{Z}$
$\hat{\rho}_{A}=\operatorname{det}\left[1-G_{A}\right] e^{-\hat{\mathrm{a}}^{\mathrm{A}} \ln \left[G_{A}^{-1}-1\right] \overline{\mathrm{a}}}$
$G_{A} \quad \begin{aligned} & \text { Single particle equal time Green } \\ & \text { function matrix in } \boldsymbol{H}_{\mathrm{A}}\end{aligned}$
$\forall \hat{O} \in \mathcal{H}_{\mathrm{A}} \quad$ Wick's theorem leads to
$\operatorname{Tr}_{A} \hat{\rho}_{A} \hat{O}=\operatorname{Tr} \hat{\rho} \hat{O} \quad$ since

$$
\operatorname{Tr}_{A}\left[\hat{\rho}_{A} \hat{a}_{x} \hat{a}_{y}^{\dagger}\right] \stackrel{!}{=} \operatorname{Tr}\left[\hat{\rho} \hat{a}_{x} \hat{a}_{y}^{\dagger}\right]=\left[G_{A}\right]_{x y}
$$

$$
1 / 2-G_{A}=\frac{1}{2} \tanh \left(H_{E} / 2\right)
$$

Insulating states. Band flattening.
$1 / 2-\mathrm{G}$ and H_{0} are adiabatically connected
\rightarrow Have the same topological properties

Entanglement Hamiltonian of a tight binding chain

$$
\begin{aligned}
& \text { Partitioning } \mathcal{H}=\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}} \quad H_{0}=t \sum_{i}\left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}+\text { h.c. }\right) \\
& \mathcal{H}_{\mathrm{B}}: \mathrm{r}<0 \quad \mathcal{H}_{\mathrm{A}}: \mathrm{r}>0 \\
& H_{E}=\sum_{n, r>0} t_{n}(r)\left(\hat{c}_{r}^{\dagger} \hat{c}_{r+n}+h . c .\right) \cong \sum_{r>0} t \beta \tanh \left(\frac{\alpha}{\beta} r\right)\left(\hat{c}_{r}^{\dagger} \hat{c}_{r+1}+h . c .\right), \quad \alpha \cong 2.5 / t \\
& L=256, L_{\mathrm{A}}=128 \\
& T=0: \quad H_{E} \cong \sum_{r>0} t \alpha r\left(\hat{c}_{r}^{\dagger} \hat{c}_{r+1}+h . c .\right) \\
& T>0: \quad H_{E} \cong \sum_{r>0} t \beta\left(\hat{c}_{r}^{\dagger} \hat{c}_{r+1}+\text { h.c. }\right)
\end{aligned}
$$

Entanglement Hamiltonian of a tight binding chain

Partitioning $\mathcal{H}=\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}} \quad H_{0}=t \sum_{i}\left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}+\right.$ h.c. $)$
$\mathcal{H}_{\mathrm{B}}: \mathrm{r}<0 \quad \mathcal{H}_{\mathrm{A}}: r>0$

$$
H_{E}=\sum_{n, r>0} t_{n}(r)\left(\hat{c}_{r}^{\dagger} \hat{c}_{r+n}+h . c .\right) \cong \sum_{r>0} t \beta \tanh \left(\frac{\alpha}{\beta} r\right)\left(\hat{c}_{r}^{\dagger} \hat{c}_{r+1}+h . c .\right), \quad \alpha \cong 2.5 / t
$$

Entanglement entropy $=$ Von Neumann entropy of H_{E}

$T>0: \quad a+b L$
Volume law
$\mathrm{T}=0: \quad \mathrm{a}+\mathrm{b} \log (\mathrm{L})$
Area law with additive log correction.

Pasquale Calabrese and John Cardy J. Stat. Mech.: Theor. Exp. (2004) P06002

$$
\left\langle\psi_{0} \mid \phi_{B} \phi_{A}\right\rangle=\lim _{\beta \rightarrow \infty}\left\langle\psi_{T}\right| e^{-\beta \hat{H}}\left|\phi_{B} \phi_{A}\right\rangle=\left\langle\phi_{B}\right| e^{-\pi \hat{H}_{R}}\left|\phi_{A}\right\rangle
$$

$\left\langle\phi_{A}^{\prime}\right| \hat{\rho}_{A}\left|\phi_{A}\right\rangle=\sum_{\left|\phi_{B}\right\rangle}\left\langle\phi_{B} \phi_{A}^{\prime} \mid \psi_{0}\right\rangle\left\langle\psi_{0} \mid \phi_{B} \phi_{A}\right\rangle=\sum_{\left|\phi_{B}\right\rangle}\left\langle\phi_{A}^{\prime}\right| e^{-\pi \hat{H}_{R}}\left|\phi_{B}\right\rangle\left\langle\phi_{B}\right| e^{-\pi \hat{H}_{R}}\left|\phi_{A}\right\rangle=\left\langle\phi_{A}^{\prime}\right| e^{-2 \pi \hat{H}_{R}}\left|\phi_{A}\right\rangle$

$$
\hat{\rho}_{A}=e^{-2 \pi \hat{H}_{R}} \quad \hat{H}_{E}=2 \pi \hat{H}_{R}=2 \pi \int_{0}^{\infty} d x x \hat{h}(x)
$$

$\stackrel{t_{1}<t}{t_{1} t} \begin{gathered}t_{1} \\ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet ~\end{gathered}$

Entanglement spectrum for non-interacting topological insulators.

Partitioning $\mathcal{H}=\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}$

$$
\hat{H}_{D K M}=\sum_{\mathbf{i}, \mathbf{j}} \hat{c}_{\mathbf{i}}^{\dagger}\left(t_{\mathbf{i}, \mathbf{j}}+i \lambda_{\mathbf{i}, \mathbf{j}} \cdot \sigma\right) \hat{c}_{\mathbf{j}}^{\dagger}
$$

$$
\begin{aligned}
& t_{\boldsymbol{i j}}= \begin{cases}-t & \text { if } \boldsymbol{i}-\boldsymbol{j}= \pm \boldsymbol{\delta}_{2}, \pm \boldsymbol{\delta}_{3} \\
-t^{\prime} & \text { if } \boldsymbol{i}-\boldsymbol{j}= \pm \boldsymbol{\delta}_{1} \\
0 & \text { otherwise }\end{cases} \\
& \xrightarrow{\mathbf{i}}=\lambda i\left(\hat{c}_{\mathbf{i}}^{\dagger} \sigma_{z} \hat{c}_{\mathbf{j}}-\hat{c}_{\mathbf{j}}^{\dagger} \sigma_{z} \hat{c}_{\mathbf{i}}\right)
\end{aligned}
$$

Topological phase transition @ t't= 2

Entanglement spectrum for non-interacting topological insulators.

Partitioning $\mathcal{H}=\mathcal{H}_{\mathrm{A}} \otimes \mathcal{H}_{\mathrm{B}}$

$$
\hat{H}_{D K M}=\sum_{\mathbf{i}, \mathbf{j}} \hat{c}_{\mathbf{i}}^{\dagger}\left(t_{\mathbf{i}, \mathbf{j}}+i \lambda_{\mathbf{i}, \mathbf{j}} \cdot \sigma\right) \hat{c}_{\mathbf{j}}^{\dagger}
$$

$$
t_{i \boldsymbol{j}}=\left\{\begin{array}{cl}
-t & \text { if } \boldsymbol{i}-\boldsymbol{j}= \pm \boldsymbol{\delta}_{2}, \pm \boldsymbol{\delta}_{3} \\
-t^{\prime} & \text { if } \boldsymbol{i}-\boldsymbol{j}= \pm \boldsymbol{\delta}_{1} \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\xrightarrow{\mathbf{i} \longrightarrow}=\lambda i\left(\hat{c}_{\mathbf{i}}^{\dagger} \sigma_{z} \hat{c}_{\mathbf{j}}-\hat{c}_{\mathbf{j}}^{\dagger} \sigma_{z} \hat{c}_{\mathbf{i}}\right)
$$

Topological phase transition @ t't=2

Dimerization along the δ_{1} direction

Dimerization along the δ_{2} direction

See also
A, Chandran, V. Khemani, S. L. Sondhi Phys. Rev. Lett. 113, 060501 (2014)

Entanglement Hamiltonian and spectra from quantum Monte Carlo simulations of interacting fermions.

Fakher F. Assaad (KITP, June 23rd 2015)

Organization
> Introduction: Entanglement Hamiltonian and spectra for free electrons.
> QMC
Weak coupling approaches \rightarrow Gaussian representation of reduced density matrix
Strong coupling approaches \rightarrow Replica
> Conclusions

F. Parisen Toldin
T. Lang

Julius-Maximilians
UNIVERSITÄT WÜRZBURG

$$
\operatorname{Tr} e^{-\beta \hat{H}} \propto \int D\{\Phi(\mathbf{i}, \tau)\} e^{-S(\{\Phi(\mathbf{i}, \tau)\})}
$$

Example

For $\quad \hat{H}=\hat{H}_{K M}+\frac{1}{4} \sum_{\mathbf{i}, \mathbf{j}} V_{\mathbf{i}, \mathbf{j}}\left(\hat{c}_{\mathbf{i}}^{\dagger} \hat{c}_{\mathbf{i}}-1\right)\left(\hat{c}_{\mathbf{j}}^{\dagger} \hat{c}_{\mathbf{j}}-1\right), \quad \hat{c}_{\mathbf{i}}^{\dagger}=\left(\hat{c}_{\mathbf{i}, \uparrow}^{\dagger}, \hat{c}_{\mathbf{i}, \downarrow}^{\dagger}\right)$

$$
S(\{\Phi(i, \tau)\})=\sum_{\mathbf{i}, \mathbf{j}, \tau} \Delta \tau \Phi(\mathbf{i}, \tau) V_{\mathrm{i}, \mathbf{j}}^{-1} \Phi(\mathbf{j}, \tau)-\ln \operatorname{Tr}\left[\prod_{\tau=1}^{L_{\varepsilon}} e^{-\Delta \tau \hat{H}_{k y}} e^{\left.-\Delta \tau \sum_{i} i^{\Phi(\mathbf{(}, \tau)\left[\tau \hat{t}_{\mathbf{i}}-1\right]}\right]}\right]
$$

$>$ The action is real! \rightarrow positive weights

$$
(U(1) \text { spin symmetry, particle-hole symmetry, } V \text { positive definite) }
$$

> Scaling $\mathrm{\beta N}^{3}$

Measuring observables.

$$
\frac{\operatorname{Tr}\left[e^{-\beta \hat{H}} \hat{C}_{x}^{\dagger} \hat{c}_{y}\right]}{\operatorname{Tr} e^{-\beta \hat{H}}}=\int D \Phi P(\Phi) G_{x, y}(\Phi) \quad P(\Phi)=\frac{e^{-S(\Phi)}}{\int D \Phi e^{-S(\Phi)},} \quad G(\Phi)=\left(1+B_{L_{\tau}} \cdots B_{1}\right)^{-1}
$$

Wicks theorem holds for a given field configuration \rightarrow
Any equal time observable can be computed from G

A different way of writing Wick's theorem. T. Grover Phys. Rev. Lett., 111, 130402, (2013).

$$
\hat{\rho} \equiv \frac{e^{-\beta \hat{H}}}{Z}=\int d \Phi P(\Phi) \hat{\rho}(\Phi), \quad \hat{\rho}(\Phi)=\operatorname{det}[1-G(\Phi)] e^{-\hat{c}^{\dagger} \ln \left[G^{-1}(\Phi)-1\right] \hat{c}}
$$

$\rightarrow \int d \Phi P(\Phi) \operatorname{Tr}[\hat{\rho}(\Phi) \hat{O}]=\langle\hat{O}\rangle \quad$ For all equal time observables.

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B} \hat{\rho} \equiv \int d \Phi P(\Phi) \hat{\rho}_{A}(\Phi)
$$

n-replicas

$$
\operatorname{Tr} \hat{\rho}_{A}{ }^{n}=\int \overbrace{d \Phi^{1} \cdots d \Phi^{n} P\left(\Phi^{1}\right) \cdots P\left(\Phi^{n}\right)} \operatorname{Tr}\left[\hat{\rho}_{A}\left(\Phi^{1}\right) \cdots \hat{\rho}_{A}\left(\Phi^{n}\right)\right]
$$

$$
S_{n}=-\frac{1}{n-1} \ln \operatorname{Tr} \hat{\rho}_{A}{ }^{n}
$$

F. F. Assaad, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121, (2014)
(b)

$$
\hat{\rho}_{A}=e^{-\hat{H}_{E}}=\operatorname{Tr}_{B} \hat{\rho} \equiv \int d \Phi P(\Phi) \hat{\rho}_{A}(\Phi),
$$

Cumulant expansion:

$$
\hat{H}_{E}=\sum_{x, y} t_{x, y} \hat{c}_{x}^{\dagger} \hat{c}_{y}+\sum_{x, y, w, z} U_{x, y, w, z} \hat{c}_{x}^{\dagger} \hat{c}_{y} \hat{c}_{w}^{\dagger} \hat{c}_{z}+\cdots
$$

$$
t_{x, y}=\left\langle h(\Phi)_{x, y}\right\rangle-\left[\left\langle\alpha(\Phi) h(\Phi)_{x, y}\right\rangle-\langle\alpha(\Phi)\rangle\left\langle h(\Phi)_{x, y}\right\rangle\right]
$$

$$
U_{x, y, w, z}=-\left[\left\langle h(\Phi)_{x, y} h(\Phi)_{w, z}\right\rangle-\left\langle h(\Phi)_{x, y}\right\rangle\left\langle h(\Phi)_{w, z}\right\rangle\right]
$$

Note $\left\langle h(\Phi)_{x, y}\right\rangle=\int d \Phi P(\Phi) h(\Phi)_{x, y}$

1D Hubbard model @ U/t = 3, <n>=1

$$
\begin{array}{r}
H_{E}=\sum_{i, n, \sigma}-t_{i, i+n}\left(\hat{c}_{i, \sigma}^{\dagger} \hat{c}_{i+n, \sigma}+\hat{c}_{i+n, \sigma}^{\dagger} \hat{c}_{i, \sigma}\right)+\sum_{i, n} V_{i, i+n} \hat{n}_{i} \hat{n}_{i+n}+\sum_{i, n} \frac{-J_{i, i+n}}{4}\left(D_{i, i+n}^{\dagger} D_{i, i+n}+D_{i, i+n} D_{i, i+n}^{\dagger}\right)+\cdots \\
{\mathrm{L}=38, \mathrm{~L}_{\mathrm{A}}=19, \mathrm{U} / \mathrm{l}=3}
\end{array}
$$

$\mathrm{L}=38, \mathrm{~L}_{\mathrm{A}}=19, \mathrm{U} / \mathrm{t}=3$

1D Hubbard model @ U/t = 3, <n>=1

$$
\begin{array}{r}
H_{E}=\sum_{i, n, \sigma}-t_{i, i+n}\left(\hat{c}_{i, \sigma}^{\dagger} \hat{c}_{i+n, \sigma}+\hat{c}_{i+n, \sigma}^{\dagger} \hat{c}_{i, \sigma}\right)+\sum_{i, n} V_{i, i+n} \hat{n}_{i} \hat{n}_{i+n}+\sum_{i, n} \frac{-J_{i, i+n}}{4}\left(D_{i, i+n}^{\dagger} D_{i, i+n}+D_{i, i+n} D_{i, i+n}^{\dagger}\right)+\cdots \\
{\mathrm{L}=38, \mathrm{~L}_{\mathrm{A}}=19, \mathrm{U} / \mathrm{t}=3, \mathrm{Bt}=15}_{\downarrow} \rightarrow
\end{array}
$$

$L=38, L_{A}=19, U / t=3, \beta t=15$

$L=38, L_{A}=19, U / t=3, \beta t=15$

Entanglement spectrum

F. F. Assaad, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121, (2014)

$$
\begin{aligned}
& \left\langle a_{x}^{\dagger}(\tau) a_{y}\right\rangle=\frac{\operatorname{Tr}\left[e^{-(\beta-\tau) H} a_{x}^{\dagger} e^{-\tau H} a_{y}\right]}{\operatorname{Tr}\left[e^{-\beta H}\right]} \rightarrow \quad\left\langle a_{x}^{\dagger}(\tau) a_{x}\right\rangle=\int d \omega \frac{e^{-\tau \omega}}{1+e^{-\beta \omega}} A(x, \omega) \\
& \left.A(x, \omega)=\frac{1}{Z} \sum_{n, m}\left(e^{-\beta E_{n}}+e^{-\beta E_{m}}\right)\left|\langle n| a_{x}^{\dagger}\right| m\right\rangle\left.\right|^{2} \delta\left(\omega-E_{m}+E_{n}\right)
\end{aligned}
$$

$$
\hat{\rho}_{A}=e^{-\hat{H}_{E}}
$$

$$
\left\langle a_{x}^{\dagger}\left(\tau_{E}\right) a_{y}\right\rangle_{E}=\frac{\operatorname{Tr}\left[\hat{\rho}_{A}{ }^{n-\tau_{E}} a_{x}^{\dagger} \hat{\rho}_{A}{ }^{\tau_{E}} a_{y}\right]}{\operatorname{Tr}\left[\hat{\rho}_{A}{ }^{n}\right]} \quad \rightarrow \quad\left\langle a_{x}^{\dagger}\left(\tau_{E}\right) a_{x}\right\rangle_{E}=\int d \omega \frac{e^{-\tau_{E} \omega}}{1+e^{-n \omega}} A^{E}(x, \omega)
$$

Note: $\mathrm{n}, \tau_{\mathrm{E}}$ are natural numbers \rightarrow restricted to low energy sector of the entanglement spectrum.

Entanglement spectrum

F. F. Assaad, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121, (2014)

Example: Single particle entanglement spectral function for dimerized Kane-Mele Hubbard model.
$\xrightarrow[\text { Topological }]{\mathrm{t}^{\prime} / \mathrm{c} / \mathrm{t}} \quad$ Trivial $\longrightarrow \mathrm{t}^{\prime} / \mathrm{t}$

Dimerization along the δ_{1} direction

$$
A_{1,1}^{E}(k, \omega) @ n=8
$$

$$
\mathrm{U} / \mathrm{t}=2, \lambda / \mathrm{t}=0.2
$$

@U/t=2: $1.95<t^{\prime} / \mathrm{t}<2$
T. C. Lang, A. M. Essin, V. Gurarie, and S. Wessel,
Phys. Rev. B 87, 205101 (2013).

Entanglement spectrum

F. F. Assaad, T. C. Lang, and F. Parisen Toldin Phys. Rev. B, 89, 125121, (2014)

Example: Single particle entanglement spectral function for dimerized Kane-Mele Hubbard model.
$\xrightarrow[\text { Topological }]{\mathrm{t}_{\mathrm{c}}{ }^{\prime} / \mathrm{t}} \quad$ Trivial $\longrightarrow \mathrm{t}^{\prime \prime} / \mathrm{t}$

Dimerization along the δ_{2} direction

$$
A_{1,1}^{E}(k, \omega) @ n=8
$$

$\mathrm{U} / \mathrm{t}=2, \lambda / \mathrm{t}=0.2$

@U/t=2: $1.95<t^{\prime} / \mathrm{t}<2$
T. C. Lang, A. M. Essin, V. Gurarie, and S. Wessel,
Phys. Rev. B 87, 205101 (2013).

Limitations of the Gaussian (or weak coupling) approach.

$$
\hat{\rho}_{A}=\int d \Phi P(\Phi) \hat{\rho}_{A}(\Phi)
$$

\rightarrow Fluctuations! e.g n=2

$$
\operatorname{Tr} \hat{\rho}_{A}^{2}=\int d \Phi^{1} d \Phi^{2} \stackrel{\text { Sample }}{P\left(\Phi^{1}\right) P\left(\Phi^{2}\right)} \operatorname{Tr}_{\mathrm{A}}\left[\hat{\rho}_{A}\left(\Phi^{1}\right) \hat{\rho}_{A}\left(\Phi^{2}\right)\right]
$$

$$
\begin{equation*}
\frac{\left\langle\Delta \operatorname{Tr}\left[\hat{\rho}_{A}\left(\Phi^{1}\right) \hat{\rho}_{A}\left(\Phi^{2}\right)\right]\right\rangle}{\left\langle\operatorname{Tr}\left[\hat{\rho}_{A}\left(\Phi^{1}\right) \hat{\rho}_{A}\left(\Phi^{2}\right)\right]\right\rangle} \approx \frac{b / \sqrt{T_{C P U}}}{e^{-a \partial_{A}}} \ll 1 \quad T_{C P U} \gg b^{2} e^{2 a \partial_{A}} \tag{区}
\end{equation*}
$$

\rightarrow Entanglement spectrum

$$
\begin{equation*}
\left\langle a_{x}^{\dagger}\left(\tau_{E}\right) a_{y}\right\rangle_{E}=\frac{\operatorname{Tr}_{\mathrm{A}}\left[\hat{\rho}_{A}{ }^{n-\tau_{E}} a_{x}^{\dagger} \hat{\rho}_{A}{ }^{\tau_{E}} a_{y}\right]}{\operatorname{Tr}_{\mathrm{A}}\left[\hat{\rho}_{A}{ }^{n}\right]} \tag{x}
\end{equation*}
$$

Is positive

$$
\operatorname{Tr} \hat{\rho}_{A}^{n}=\int d \Phi^{1} \cdots d \Phi^{n} P\left(\Phi^{1}\right) \cdots P\left(\Phi^{n}\right) \operatorname{Tr}_{\mathrm{A}}\left[\hat{\rho}_{A}\left(\Phi^{1}\right) \cdots \hat{\rho}_{A}\left(\Phi^{n}\right)\right]
$$

Sample
\rightarrow Identical to replica approach FFA, PRB 91, 125146 (2015)
\rightarrow Entanglement Hamiltonian with cumulant expansion

Entanglement Hamiltonian and spectra from quantum Monte Carlo simulations of interacting fermions.

Fakher F. Assaad (KITP, June 23rd 2015)

Organization
> Introduction: Entanglement Hamiltonian and spectra for free electrons.
> QMC
Weak coupling approaches \rightarrow Gaussian representation of reduced density matrix
Strong coupling approaches \rightarrow Replica
> Conclusions

F. Parisen Toldin
T. Lang

Julius-Maximilians
UNIVERSITÄT WÜRZBURG

Entanglement spectrum for strongly correlated electrons

M. B. Hastings, I. Gonzalez, A. B. Kallin, and R. G. Melko, Phys. Rev. Lett, 157201, (2010). P. Broecker and S. Trebst. JSTAT, P08015, (2014).

Replica method: Hilbert space
$\mathcal{H}_{\text {tot }}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{(1)} \otimes \mathcal{H}_{B}^{(2)} \cdots \mathcal{H}_{B}^{(n)}$
Time dependent Hamiltonian, $0<\tau<n \beta$
$\hat{H}(\tau)=\sum_{r=1}^{n} \Theta[\tau-(r-1) \beta] \Theta[r \beta-\tau] \hat{H}^{(r)}$.
$\hat{H}^{(r)}$ Hamiltonian in Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{(r)}$

Entanglement spectrum for strongly correlated electrons

M. B. Hastings, I. Gonzalez, A. B. Kallin, and R. G. Melko, Phys. Rev. Lett, 157201, (2010). P. Broecker and S. Trebst. JSTAT, P08015, (2014).

Replica method: Hilbert space

$$
\mathcal{H}_{\mathrm{tot}}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{(1)} \otimes \mathcal{H}_{B}^{(2)} \cdots \mathcal{H}_{B}^{(n)}
$$

Time dependent Hamiltonian, $0<\tau<n \beta$
$\hat{H}(\tau)=\sum_{r=1}^{n} \Theta[\tau-(r-1) \beta] \Theta[r \beta-\tau] \hat{H}^{(r)}$.
$\hat{H}^{(r)}$ Hamiltonian in Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}^{(r)}$

$$
\frac{\operatorname{Tr}_{\mathcal{H}_{t o t}}\left[\hat{U}\left(n \beta, \tau_{E} \beta\right) \hat{O}^{\dagger} \hat{U}\left(\tau_{E} \beta, 0\right) \hat{O}\right]}{\operatorname{Tr}_{\mathcal{H}_{t o t}}[\hat{U}(n \beta, 0)]}=\frac{\operatorname{Tr}_{\mathcal{H}_{A}}\left[e^{-\left(n-\tau_{E}\right) \hat{H}_{E}} \hat{O}^{\dagger} e^{-\tau_{E} \hat{H}_{E}} \hat{O}\right]}{\operatorname{Tr}_{\mathcal{H}_{A}}\left[e^{-n \hat{H}_{E}}\right]}
$$

\rightarrow One can study equal time and dynamical properties of the entanglement Hamiltonian

One-dimensional Hubbard chain @ U/t=3, <n>=1

$$
\begin{aligned}
& \text { Cumulant expansion } \\
& H_{E}=\sum_{i, n, \sigma}-t_{i, i+n}\left(\hat{c}_{i, \sigma}^{\dagger} \hat{c}_{i+n, \sigma}+\hat{c}_{i+n, \sigma}^{\dagger} \hat{c}_{i, \sigma}\right)+\sum_{i, n} V_{i, i+n} \hat{n}_{i} \hat{n}_{i+n}+\sum_{i, n} \frac{-J_{i, i+n}}{4}\left(D_{i, i+n}^{\dagger} D_{i, i+n}+D_{i, i+n} D_{i, i+n}^{\dagger}\right)+\cdots
\end{aligned}
$$

$$
\mathrm{L}=38, \mathrm{~L}_{\mathrm{A}}=19, \mathrm{U} / t=3, \mathrm{Bt}=15
$$

$\mathrm{L}=38, \mathrm{~L}_{\mathrm{A}}=19, \mathrm{U} / \mathrm{t}=3, \beta \mathrm{t}=15$

Single particle density of states of the entanglement Hamiltonian @ r=0. \rightarrow Gap @ r>0 grows.
\rightarrow Insulating state.

One-dimensional Hubbard chain @ U/t=3, <n>=1

$$
\begin{aligned}
& \text { Cumulant expansion } \\
& H_{E}=\sum_{i, n, \sigma}-t_{i, i+n}\left(\hat{c}_{i, \sigma}^{\dagger} \hat{c}_{i+n, \sigma}+\hat{c}_{i+n, \sigma}^{\dagger} \hat{c}_{i, \sigma}\right)+\sum_{i, n} V_{i, i+n} \hat{n}_{i} \hat{n}_{i+n}+\sum_{i, n} \frac{-J_{i, i+n}}{4}\left(D_{i, i+n}^{\dagger} D_{i, i+n}+D_{i, i+n} D_{i, i+n}^{\dagger}\right)+\cdots
\end{aligned}
$$

Local dynamical spin structure factor of the entanglement Hamiltonian \rightarrow Gapless spin excitations

Single-particle spectrum of the entanglement Hamiltonian

$\frac{\operatorname{Tr}_{\mathcal{H}_{A}}\left[e^{-\left(n-\tau_{E}\right) \hat{H}_{E}} \hat{a}_{k, m}^{\dagger} e^{-\tau_{E} \hat{H}_{E}} \hat{a}_{k, m^{\prime}}\right]}{\operatorname{Tr}_{\mathcal{H}_{A}}\left[e^{-n \hat{H}_{E}}\right]}$
k: translation symmetry in $\mathrm{a}_{1}, \mathrm{~m}$: orbital index across partition A
Wick rotation (Stochastic MaxEnt) to produce spectral function

Part I Weak coupling methods. Direct calculation of entanglement Hamiltonian (cumulant expansion)

$$
\begin{gathered}
H_{E}=\sum_{i, n, \sigma}-t_{i, i+n}\left(\hat{c}_{i, \sigma}^{\dagger} \hat{c}_{i+n, \sigma}+\hat{c}_{i+n, \sigma}^{\dagger} \hat{c}_{i, \sigma}\right)+ \\
\sum_{i, n} V_{i, i+n} \hat{n}_{i} \hat{n}_{i+n}+ \\
\sum_{i, n} \frac{-J_{i, i+n}}{4}\left(D_{i, i+n}^{\dagger} D_{i, i+n}+D_{i, i+n} D_{i, i+n}^{\dagger}\right)+\cdots \\
\\
\end{gathered}
$$

Part II Method to compute entanglement spectrum of strongly correlated fermion systems with QMC.

