PARTICLE PARTIONED ENTANGLEMENT IN QUANTUM FLUIDS

Measuring Rényi entropies in the spatial continuum

Chris Herdman UVM /
U Waterloo

Stephen Inglis U Waterloo / LMU

P.N. Roy

U Waterloo

Roger Melko
U Waterloo

Entanglement in quantum liquids and gases

 Much theoretical work has focused on systems with discrete Hilbert spaces: qubits, insulating lattice models, ... Experiments employ the quantum and positional states of ultra-cold atomic gasses and BECsobservation and manipulation of Dicke states

B. Lücke, et.al., PRL 112, 155304 (2014)

ultra high-precision quantum interferometry

Rényi entropy in lattice gases R. Islam, et.al., (2015)

multiparticle entanglement of trapped ions

Describing quantum liquids and gases

 governed by the general many-body Hamiltonian$$
H=\sum_{i=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+{\underset{i}{U}}_{U_{i}}\right)+\sum_{i<j} V_{i j}
$$

trapped ions with a periodic lattice potential
J. Wernsdorfer et al. PRA, 81, 043620 (2010)

quantum nanofluids of helium-4
B. Kulchytskyy et al. PRB, 88, 064512 (2013)

Can we quantify, optimize \& employ the entanglement in quantum fluids?

Quantifying Entanglement

 bipartite Rényi entropies in the spatial continuum

- 0

Algorithmic Development measurement and benchmarking using path integral quantum Monte Carlo

Quantifying entanglement: a prescription

1. Prepare a system in the spatial continuum
2. Bipartition into two subsystems: A \& B
3. Compute the reduced matrix of region A by tracing over all degrees of freedom in region B
4. Measure the entanglement entropy

$$
\rho \equiv|\Psi\rangle\langle\Psi| \rightarrow \rho_{A}=\operatorname{Tr}_{B} \rho
$$

$$
|\Psi\rangle \stackrel{?}{=}\left\{\begin{array}{l}
|\varphi\rangle_{A} \otimes|\chi\rangle_{B} \\
\sum_{a}\left|\phi_{a}\right\rangle_{A} \otimes|\chi\rangle_{B}
\end{array}\right.
$$

$$
S\left(\rho_{A}\right)=-\operatorname{Tr} \rho_{A} \log \rho_{A}
$$

Rényi Entropies

$$
S_{\alpha}\left[\rho_{A}\right]=\frac{1}{1-\alpha} \log \operatorname{Tr} \rho_{A}^{\alpha}
$$

Different bipartitions of itinerant particles

for identical particles in the spatial continuum, various ways to partition ground state

Spatial Bipartition

Constructed from the Fock space of single-particle modes

$$
\begin{aligned}
|\Psi\rangle=\sum_{n_{A}, \boldsymbol{n}_{B}} c_{\boldsymbol{n}_{A} \boldsymbol{n}_{B}}\left|n_{A}\right\rangle \otimes\left|\boldsymbol{n}_{B}\right\rangle \\
\rho_{A} \rightarrow S(A)
\end{aligned}
$$

$$
0080+0 \cdot 0
$$

Particle Bipartition

Artificially label a subset of n particles

$$
|\Psi\rangle=\left|\boldsymbol{r}_{1} \cdots \boldsymbol{r}_{N}\right\rangle
$$

$$
\rho_{n}=\int d \boldsymbol{r}_{n+1} \cdots d \boldsymbol{r}_{N}\langle\Psi| \rho|\Psi\rangle
$$

$$
\text { © } 808080 \text { ene }{ }^{\circ}
$$

$$
\because 200^{\circ} 80 \cdot 000^{\circ} 880^{\circ 00} 00 .
$$

$$
\rho_{n} \rightarrow S(n)^{\circ} \because 8: 0000000000
$$

Example: entanglement in the free Bose gas

$$
|\mathrm{BEC}\rangle \equiv \frac{1}{\sqrt{N!}}\left(\phi_{0}^{\dagger}\right)^{N}
$$

Spatial Bipartition

entanglement is non-zero and is generated via number fluctuations

$$
S_{2}(A) \sim \frac{1}{2} \log \ell_{A}
$$

Particle Bipartition

Ground state is already in product-form in first quantization

$$
S_{2}(n)=0
$$

How do interactions change this picture?

 "toy" quantum fluid: 1d Bose-Hubbard model$$
H_{\mathrm{BH}}=\sum_{j}\left[-t\left(b_{j}^{\dagger} b_{j+1}+\text { h.c. }\right)+\frac{U}{2} n_{j}\left(n_{j}-1\right)-\mu_{j} n_{j}\right]
$$

3 types of candidate ground states

$$
\begin{aligned}
& |\mathrm{BEC}\rangle \equiv \frac{1}{\sqrt{N!}}\left(\phi_{0}^{\dagger}\right)^{N}|\mathbf{0}\rangle \\
& |\mathrm{Mott}\rangle \equiv \prod b_{j}^{\dagger}|\mathbf{0}\rangle
\end{aligned}
$$

State

$\begin{array}{c}\text { Particle } \\ \text { Entanglement }\end{array}$
0
$L \log 2$

EEC
Mott $\quad L \log 2$
$|0\rangle$ Cat
$\log L$

$\begin{array}{c}\text { Particle } \\ \text { Entanglement }\end{array}$
0
$L \log 2$

$\begin{array}{c}\text { Particle } \\ \text { Entanglement }\end{array}$
0
$L \log 2$

Spatial
Entanglement
$1 / 2 \log L$
\mid Cat $\rangle \equiv \sum_{j} \frac{1}{\sqrt{L} \sqrt{N!}}\left(b_{j}^{\dagger}\right)^{N}$
O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)

Can any of this entanglement be put to use?

Or is it all just fluffy bunnies?
J. Dunningham, A. Rau, and K. Burnett, Science 307, 872 (2005)

Using entanglement as a resource requires ability to perform local physical operations on subsystems

Particle Entanglement inaccessible due to the indistinguishability of particles

Spatial Entanglement

 particle number conservation prohibits swapping to conventional register
$\operatorname{SWAP}\left\{\left(\left|0_{\text {reg }}\right\rangle+e^{i \phi}\left|1_{\text {reg }}\right\rangle\right) \otimes\left(\left|0_{A}\right\rangle \otimes\left|1_{B}\right\rangle\right)\right\}=\left|0_{\text {reg }}\right\rangle \otimes\left(|0\rangle+\mathrm{e}^{i \phi}\left|1_{A}\right\rangle\right) \otimes\left|1_{B}\right\rangle$

The Entanglement of Particles

 Get around these difficulties by combining the two measures. H. M. Wiseman and J. A. Vaccaro, PRL 91, 097902 (2003)$$
\begin{aligned}
& E_{p}(A) \equiv \sum_{n} P_{n} S\left(\rho_{A, n}\right) \\
& \rho_{A, n} \equiv \frac{1}{P_{n}} \hat{P}_{n} \rho_{A} \hat{P}_{n} \\
& \text { probability } \quad \text { projection } \\
& \text { operator }
\end{aligned}
$$

E_{P} is the maximal amount of entanglement that can be produced between quantum registers by local operations.

Back to the Bose-Hubbard model

$$
H_{\mathrm{BH}}=\sum_{j}\left[-t\left(b_{j}^{\dagger} b_{j+1}+\text { h.c. }\right)+\frac{U}{2} n_{j}\left(n_{j}-1\right)\right]
$$

Algorithmic Development

 measurement and benchmarking using path integral quantum Monte Carlo

Path integral ground state quantum Monte Carlo

Description

$$
H=\sum_{i=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}+U_{i}\right)+\sum_{i<j} V_{i j},
$$

Projecting

trial wave function onto ground state

$$
|\Psi\rangle=\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta H}\left|\Psi_{T}\right\rangle
$$

Configurations

discrete imaginary time worldlines constructed $\rho_{\tau}\left(\boldsymbol{R}, \boldsymbol{R}^{\prime}\right)=\langle\boldsymbol{R}| \mathrm{e}^{-\tau H}\left|\boldsymbol{R}^{\prime}\right\rangle$ from products of short time propagator

Observables
exact method for computing ground state expectation values

$$
\langle\hat{\mathcal{O}}\rangle=\lim _{\beta \rightarrow \infty} \frac{\left\langle\Psi_{\mathrm{T}}\right| e^{-\beta H} \hat{\mathcal{O}} e^{-\beta H}\left|\Psi_{\mathrm{T}}\right\rangle}{\left\langle\Psi_{\mathrm{T}}\right| e^{-2 \beta H}\left|\Psi_{\mathrm{T}}\right\rangle}
$$

Computing Rényi entropies in Monte Carlo

Replicate the system

Permute (swap) the subregions

Technology imported from QFT to QMC

```
C. Holzhey, F. Larsen, and F. Wilczek, Nuclear Physics B 424, 443 (1994).
P. Calabrese and J. Cardy, J. Stat. Mech.: Theor. Exp. 2004, P06002 (2004)
M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, PRL 104,157201 (2010)
R. Melko, A. Kallin, and M. Hastings, PRB 82, 100409 (2010)
```

For $\alpha=2$ replicas, expectation value of the permutation operator is a measure of the 2nd Rényi entropy.

$$
S_{2}=-\log \left\langle\Pi_{A}\right\rangle
$$

Porting to the path integral representation

Break continuous space paths at the center time slice β

$\left\langle\Pi_{2}^{A}\right\rangle \sim\left\langle\rho_{\tau}^{A}\left(\boldsymbol{R}^{\beta} \otimes \tilde{\boldsymbol{R}}^{\beta} ; \Pi_{2}^{A}\left[\boldsymbol{R}^{\beta+\tau} \otimes \tilde{\boldsymbol{R}}^{\beta+\tau}\right]\right)\right\rangle$
C. Herdman et al. Phys. Rev. B, 89,140501 (2014)
C. Herdman et al. Phys. Rev. E, 90, 013308 (2014)

The bipartitions only exist at this time slice. Broken links are in A.

Benchmarking on a non-trivial model

 N -Harmonium in 1 dharmonically interacting and confined bosons

$$
H=\sum_{i=1}^{N}\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x_{i}^{2}}+\frac{1}{2} m \omega_{0}^{2} x_{i}^{2}+\frac{1}{2} m \omega_{\mathrm{int}}^{2} \sum_{j>i}\left(x_{i}-x_{j}\right)^{2}\right]
$$

exact solution can be computed using Wigner quasi-distributions for bosons or fermions C. L. Benavides-Riveros, I. V. Toranzo, and J. S. Dehesa, JPB 47195503 (2014)
QMC Results: Entanglement of Particles

The useful entanglement is zero for non-interacting particles and peaks at some value of the interaction strength
$\omega_{\text {int }} / \omega_{0} \quad$ C. Herdman et al., Phys. Rev. E, 90, 013308 (2014)

Quantifying Entanglement bipartite Rényi entropies in the spatial continuum

Applications to 1d bosons

 interactions and the connection between entanglement and condensate fraction

Moving towards a physically realizable system

 one dimensional short-range interacting bosons$$
H=\sum_{i=1}^{N}\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x_{i}^{2}}+\frac{2 c}{\sqrt{2 \pi \sigma^{2}}} \sum_{j>i} \mathrm{e}^{-\left|x_{i}-x_{j}\right|^{2} / 2 \sigma^{2}}\right]
$$

as $\sigma \rightarrow 0 \& \sigma / c \rightarrow$ const. we recover the Lieb-Liniger model of delta-function interacting bosons.
E. H. Lieb and W. Liniger, PR 130, 1605 (1963)

c $\rightarrow \infty$: Tonks-Girardeau gas
B. Paredes, et al., Nature 429, 277 (2004)
T. Kinoshita, et al., Science 305, 1125 (2004)

Single particle entanglement is related to the condensate fraction!

the fractional population of particles in the zero-momentum state

$$
n_{0}=\lim _{\left|x-x^{\prime}\right| \rightarrow \infty} \rho_{1}\left(x, x^{\prime}\right) \sim\left|\Psi_{0}(x)\right|^{2}
$$

Easily accessible in experiments and simulations!

QMC
experiment
S. Trotzky, et al., Nat. Phys. 6, 998 (2010)

Single particle entanglement is related to the

 condensate fraction!$$
S_{2}(n=1)=-\log \operatorname{Tr} \rho_{1}^{2}
$$

- n_{0} is the largest eigenvalue of the one-body density matrix
- determines the single copy entropy: $S_{\infty}=-\log n_{0}$
- determines the "max-entropy": $2 S_{\infty}=-2 \log n_{0}$

$$
\log \frac{1}{n_{0}} \leq S_{2}(n=1) \leq 2 \log \frac{1}{n_{0}}
$$

Bounding entanglement with the condensate fraction

$$
\log \frac{1}{n_{0}} \leq S_{2}(n=1) \leq 2 \log \frac{1}{n_{0}}
$$

Finite size scaling and universality

Universal "area"-like law for particle entanglement
A canonical scaling function for particle entanglement entropy
O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)

$$
S(n)=a n \log N+b
$$

$$
H_{\mathrm{TLL}}=\frac{\hbar v}{2 \pi} \int d x\left[K\left(\partial_{x} \phi\right)^{2}+\frac{1}{K}\left(\partial_{x} \theta-\rho_{0}\right)^{2}\right]
$$

Luttinger Liquid bosonic one-body density matrix:

$$
\rho_{1}\left(x, x^{\prime}\right)=\left\langle\Psi^{\dagger}(x) \Psi\left(x^{\prime}\right)\right\rangle \sim \frac{1}{\left|x-x^{\prime}\right|^{1 / 2 K}}
$$

One-Particle Entanglement $S_{2}(n=1)=-\log \operatorname{Tr} \rho_{1}^{2}$

Bosonic Luttinger liquid scaling

$$
S_{2}(n=1) \simeq \frac{1}{K} \log N-\log \left[1-\frac{1}{K}\left(\frac{N}{2}\right)^{1 / K-1}\right]+\log \frac{K-1}{2^{1 / K} K}
$$

Open questions \& what's next

$$
S_{2}(n)=\frac{n}{K} \log N+\text { const. }+\mathcal{O}\left(\frac{1}{N^{1-1 / K}}\right)
$$

- have only numerically confirmed $n>1$ scaling
- what about other Rényi entropies?
- $n=1$ pre-factor for a Fermionic Luttinger liquid?
- higher dimensions? ab initio simulations?
- relation to fluctuation entanglement?
- entanglement of particles in more realistic systems
- corrections to scaling for spatial bipartitions in the continuum?

We can quantify entanglement in ultracold Bose gases!

Experimental measurement \& optimization

Bound entanglement via the condensate fraction and learn how to optimize the functional entanglement that can be transferred to a register for quantum information processing.

Applications to low dimensional field theories
Scaling of the one-particle entanglement is related to the Luttinger parameter of the effective field theory.
http://delmaestro.org/adrian http://code.delmaestro.org

Computing resources and partners in research

