PARTICLE PARTIONED ENTANGLEMENT IN QUANTUM FLUIDS

Measuring Rényi entropies in the spatial continuum

Chris Herdman UVM / U Waterloo

Stephen Inglis U Waterloo / LMU

P.N. Roy U Waterloo

Roger Melko U Waterloo

Phys. Rev. B, 89, 140501 (2014) Phys. Rev. E, 90, 013308 (2014) arXiv:1412.6529 (2015) Adrian Del MaestroKITP 2015University of Vermont

Entanglement in quantum liquids and gases

Much theoretical work has focused on systems with discrete Hilbert spaces: qubits, insulating lattice models, ...

Experiments employ the quantum and positional states of ultra-cold atomic gasses and BECs

observation and manipulation of Dicke states

boson sampling

C. Shen, et al., PRL 112, 050504 (2014)

ultra high-precision quantum interferometry

.Estève, *et al.,* Nature 455, 1216 (2008) *Rényi entropy in lattice gases* R. Islam, *et.al.*, (2015)

multiparticle entanglement of trapped ions

T. Monz, et.al., PRL 102, 040501 (2009)

Describing quantum liquids and gases

governed by the general many-body Hamiltonian

trapped ions with a periodic lattice potential

J. Wernsdorfer et al. PRA, 81, 043620 (2010)

quantum nanofluids of helium-4 B. Kulchytskyy et al. PRB, 88, 064512 (2013)

Can we quantify, optimize & employ the entanglement in quantum fluids?

Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum

Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction

Quantifying entanglement: a prescription

- **1**. Prepare a system in the spatial continuum
- 2. Bipartition into two subsystems: A & B
- **3.** Compute the reduced matrix of region A by tracing over all degrees of freedom in region **B 4.** Measure the entanglement entropy

$$\rho \equiv |\Psi\rangle\langle\Psi| \rightarrow \rho_A = \operatorname{Tr} \rho_B$$
$$S(\rho_A) = -\operatorname{Tr} \rho_A \log \rho_A$$

$$S(\rho_A) = -\mathrm{Tr}\rho_A \log \rho_A$$

Rényi Entropies

$$S_{\alpha}[\rho_A] = \frac{1}{1-\alpha} \log \operatorname{Tr} \rho_A^{\alpha}$$

 $|\Psi\rangle \stackrel{?}{=} \begin{cases} |\varphi\rangle_A \otimes |\chi\rangle_B \\ \\ \sum_a |\phi_a\rangle_A \otimes |\chi\rangle_B \end{cases}$ o o o o

Different bipartitions of itinerant particles

for identical particles in the spatial continuum, various ways to partition ground state

Spatial Bipartition

Constructed from the Fock space of single-particle modes

$$|\Psi
angle = \sum_{\boldsymbol{n}_A, \boldsymbol{n}_B} c_{\boldsymbol{n}_A \boldsymbol{n}_B} \left| \boldsymbol{n}_A
ight
angle \otimes \left| \boldsymbol{n}_B
ight
angle \
ho_A o S(A)$$

Particle Bipartition

Artificially label a subset of n particles

$$\begin{split} |\Psi\rangle &= |\boldsymbol{r}_{1}\cdots\boldsymbol{r}_{N}\rangle \\ \rho_{n} &= \int d\boldsymbol{r}_{n+1}\cdots d\boldsymbol{r}_{N} \langle \Psi|\rho|\Psi\rangle \\ \rho_{n} &\to S(n) \end{split}$$

n-body density matrix

Example: entanglement in the free Bose gas

$$|\text{BEC}\rangle \equiv \frac{1}{\sqrt{N!}} \left(\phi_0^{\dagger}\right)^N |\mathbf{0}\rangle$$

Spatial Bipartition

entanglement is non-zero and is generated via number fluctuations

$$S_2(A) \sim \frac{1}{2} \log \ell_A$$

Particle Bipartition

Ground state is already in product-form in first quantization

$$S_2(n) = 0$$

C. Simon, PRA 66, 052323 (2002) W. Ding and K. Yang, PRA 80, 012329 (2009)

How do interactions change this picture? "toy" quantum fluid: 1d Bose-Hubbard model $H_{\rm BH} = \sum_{j} \left[-t \left(b_{j}^{\dagger} b_{j+1} + \text{h.c.} \right) + \frac{U}{2} n_{j} \left(n_{j} - 1 \right) - \mu_{j} n_{j} \right]$

R. Islam et al. (2015)

3 types of candidate ground states

$ \text{BEC}\rangle \equiv \frac{1}{\sqrt{N!}} \left(\phi_0^{\dagger}\right)^N 0\rangle$	State	Particle Entanglement	Spatial Entanglement
$ \text{Mott}\rangle \equiv \prod b^{\dagger} 0\rangle$	BEC	0	$1/2 \log L$
	Mott	$L \log 2$	0
$ \text{Cat}\rangle \equiv \sum_{j} \frac{1}{\sqrt{L}\sqrt{N!}} \left(b_{j}^{\dagger}\right)^{N} 0\rangle$	Cat	$\log L$	$\log 2$

O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)

Can any of this entanglement be put to use?

Or is it all just fluffy bunnies?

J. Dunningham, A. Rau, and K. Burnett, Science 307, 872 (2005)

Using entanglement as a resource requires ability to perform local physical operations on subsystems

Particle Entanglement

inaccessible due to the indistinguishability of particles

Spatial Entanglement

particle number conservation prohibits swapping to conventional register

The Entanglement of Particles

Get around these difficulties by combining

the two measures. H. M. Wiseman and J. A. Vaccaro, PRL 91, 097902 (2003)

 E_P is the maximal amount of entanglement that can be produced between quantum registers by local operations.

Back to the Bose-Hubbard model

C. Herdman *et al.* PRE, 90, 013308 (2014)

Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum

Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction

Path integral ground state quantum Monte Carlo

Description

$$H = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_i} \nabla_i^2 + U_i \right) + \sum_{i < j} V_{ij},$$

Projecting

trial wave function onto ground state

$$\left|\Psi\right\rangle = \lim_{\beta \to \infty} \mathrm{e}^{-\beta H} \left|\Psi_T\right\rangle$$

Configurations

discrete imaginary time worldlines constructed from products of short time propagator

Observables

exact method for computing ground state expectation values

$$\rho_{\tau}(\boldsymbol{R}, \boldsymbol{R'}) = \langle \boldsymbol{R} | \mathrm{e}^{-\tau H} | \boldsymbol{R'} \rangle$$

$$\left\langle \hat{\mathcal{O}} \right\rangle = \lim_{\beta \to \infty} \frac{\left\langle \Psi_{\mathrm{T}} \right| e^{-\beta H} \hat{\mathcal{O}} e^{-\beta H} \left| \Psi_{\mathrm{T}} \right\rangle}{\left\langle \Psi_{\mathrm{T}} \right| e^{-2\beta H} \left| \Psi_{\mathrm{T}} \right\rangle}$$

D. M. Ceperley, RMP 67, 279 (1995) A. Sarsa, *et. al.*, J. Chem. Phys. 113, 1366 (2000)

Computing Rényi entropies in Monte Carlo

Replicate the system

Permute (swap) the subregions

Technology imported from QFT to QMC

C. Holzhey, F. Larsen, and F. Wilczek, Nuclear Physics B 424, 443 (1994). P. Calabrese and J. Cardy, J. Stat. Mech.: Theor. Exp. 2004, P06002 (2004) M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, PRL 104, 157201 (2010) R. Melko, A. Kallin, and M. Hastings, PRB 82, 100409 (2010)

For $\alpha = 2$ replicas, expectation value of the permutation operator is a measure of the 2nd Rényi entropy.

$$S_2 = -\log\langle \Pi_A \rangle$$

Porting to the path integral representation

Break continuous space paths at the center time slice β

Benchmarking on a non-trivial model N-Harmonium in 1d

harmonically interacting and confined bosons

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{1}{2} m \omega_0^2 x_i^2 + \frac{1}{2} m \omega_{\text{int}}^2 \sum_{j>i} \left(x_i - x_j \right)^2 \right]$$

exact solution can be computed using Wigner quasi-distributions for bosons or fermions C. L. Benavides-Riveros, I. V. Toranzo, and J. S. Dehesa, JPB 47 195503 (2014)

QMC Results: Entanglement of Particles

The useful entanglement is zero for non-interacting particles and peaks at some value of the interaction strength

C. Herdman *et al.,* Phys. Rev. E, 90, 013308 (2014)

Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum

Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

Applications to 1d bosons

interactions and the connection between entanglement and condensate fraction

Moving towards a physically realizable system one dimensional short-range interacting bosons

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{2c}{\sqrt{2\pi\sigma^2}} \sum_{j>i} e^{-|x_i - x_j|^2/2\sigma^2} \right]$$

as $\sigma \rightarrow 0$ & $\sigma/c \rightarrow const.$ we recover the Lieb-Liniger model of delta-function interacting bosons.

E. H. Lieb and W. Liniger, PR 130, 1605 (1963)

$c \rightarrow \infty$: Tonks-Girardeau gas

B. Paredes, *et al.*, Nature 429, 277 (2004) T. Kinoshita, *et al.*, Science 305, 1125 (2004)

Single particle entanglement is related to the condensate fraction!

the fractional population of particles in the *zero-momentum state*

$$n_0 = \lim_{|x-x'| \to \infty} \rho_1(x, x') \sim |\Psi_0(x)|^2$$

Easily accessible in experiments and simulations!

S. Trotzky, *et al.*, Nat. Phys. 6, 998 (2010)

Single particle entanglement is related to the condensate fraction!

$$S_2(n=1) = -\log \operatorname{Tr} \rho_1^2$$

- n_0 is the largest eigenvalue of the one-body density matrix
- determines the single copy entropy: $S_{\infty} = -\log n_0$
- determines the "max-entropy": $2S_{\infty} = -2\log n_0$

$$\log \frac{1}{n_0} \le S_2(n=1) \le 2\log \frac{1}{n_0}$$

Bounding entanglement with the condensate fraction

Finite size scaling and universality

Universal "area"-like law for particle entanglement A canonical scaling function for particle entanglement entropy

O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)

$$S(n) = an \log N + b$$

$$\mathbf{r}_{\mathrm{LL}} = \frac{\hbar v}{2\pi} \int dx \left[K \left(\partial_x \phi \right)^2 + \frac{1}{K} \left(\partial_x \theta - \rho_0 \right)^2 \right]$$
S.L. Tomonaga, Prog. Theo. Phys. 5, 544 (195)

S.-I. Tomonaga, Prog. Theo. Phys. 5, 544 (1951) J.M. Luttinger, J. Math. Phys. 4, 1154 (1963) F.D.M. Haldane, PRL 47, 1840 (1981)

Luttinger Liquid bosonic one-body density matrix:

 $\rho_1(x, x') = \langle \Psi^{\dagger}(x)\Psi(x')\rangle \sim \frac{1}{|x - x'|^{1/2K}}$ One-Particle Entanglement $S_2(n = 1) = -\log \operatorname{Tr} \rho_1^2$

Bosonic Luttinger liquid scaling

$$S_2(n=1) \simeq \frac{1}{K} \log N - \log \left[1 - \frac{1}{K} \left(\frac{N}{2}\right)^{1/K-1}\right] + \log \frac{K-1}{2^{1/K}K}$$

Open questions & what's next

$$S_2(n) = \frac{n}{K} \log N + \text{const.} + \mathcal{O}\left(\frac{1}{N^{1-1/K}}\right)$$

- have only numerically confirmed n > 1 scaling
- what about other Rényi entropies?
- n = 1 pre-factor for a Fermionic Luttinger liquid?
- higher dimensions? ab initio simulations?
- relation to fluctuation entanglement?
- entanglement of particles in more realistic systems
- corrections to scaling for spatial bipartitions in the continuum?

We can quantify entanglement in ultracold Bose gases!

Experimental measurement & optimization

Bound entanglement via the condensate fraction and learn how to optimize the functional entanglement that can be transferred to a register for quantum information processing.

Applications to low dimensional field theories

Scaling of the one-particle entanglement is related to the Luttinger parameter of the effective field theory.

http://delmaestro.org/adrian http://code.delmaestro.org @agdelma

Computing resources and partners in research

Extreme Science and Engineering Discovery Environment