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Entanglement in quantum liquids and gases

.Estève, et al.,  
Nature 455, 1216 (2008)

Much theoretical work has focused on systems with 
discrete Hilbert spaces: qubits, insulating lattice models, …
Experiments employ the quantum and positional states of 
ultra-cold atomic gasses and BECs

LETTERS

Squeezing and entanglement in a Bose–Einstein
condensate
J. Estève1, C. Gross1, A. Weller1, S. Giovanazzi1 & M. K. Oberthaler1

Entanglement, a key feature of quantum mechanics, is a resource
that allows the improvement of precision measurements beyond
the conventional bound attainable by classical means1. This results
in the standard quantum limit, which is reached in today’s best
available sensors of various quantities such as time2 and posi-
tion3,4. Many of these sensors are interferometers in which the
standard quantum limit can be overcome by using quantum-
entangled states (in particular spin squeezed states5,6) at the two
input ports. Bose–Einstein condensates of ultracold atoms are
considered good candidates to provide such states involving a
large number of particles. Here we demonstrate spin squeezed
states suitable for atomic interferometry by splitting a condensate
into a few parts using a lattice potential. Site-resolved detection of
the atoms allows the measurement of the atom number difference
and relative phase, which are conjugate variables. The observed
fluctuations imply entanglement between the particles7–9, a
resource that would allow a precision gain of 3.8 dB over the stan-
dard quantum limit for interferometric measurements.
Spin squeezing was one of the first quantum strategies proposed to
overcome the standard quantum limit, in a precision measurement5,6

that triggered many experiments10–17. It applies to measurements
where the final readout is done by counting the occupancy difference

between two quantum states, as in interferometry or in spectroscopy.
The name ‘spin squeezing’ originates from the fact that the N part-
icles used in the measurement can be described by a fictitious spin
J 5 N/2. In an interferometric sequence, the spin undergoes a series
of rotations in which one of the rotation angles is the phase shift to be
measured. A sufficient criterion for the input state, allowing for
quantum-enhanced metrology, is given by jS , 1, where
j2

S~2JDJ 2
z =(hJxi2zhJyi2) is the squeezing parameter introduced in

ref. 6. The fluctuations of the spin in one direction have to be reduced
below shot noise (here DJ 2

z vJ=2), and the spin polarization in the
orthogonal plane, ÆJxæ2 1 ÆJyæ2, has to be large enough to maintain the
sensitivity of the interferometer. A pictorial representation of this
condition is shown in Fig. 1b. The precision of such a quantum-
enhanced measurement is jS=

ffiffiffiffi
N
p

, whereas the standard quantum
limit set by shot noise is 1=

ffiffiffiffi
N
p

.
In this Letter, we report the observation of entangled squeezed

states in a Bose–Einstein condensate of 87Rb atoms. The particles
are distributed over a small number of lattice sites (between two
and six) in a one-dimensional optical lattice (Fig. 1a). The occu-
pation number per site ranges from 100 to 1,100 atoms. The two
modes supporting the squeezing are two states of the external atomic
motion corresponding to the condensate mean-field wavefunctions
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Figure 1 | Observing spin squeezing in a Bose–Einstein condensate
confined in a double- or six-well trap. a, The atoms are trapped in an optical
lattice potential superimposed on an harmonic dipole trap. The number of
occupied sites is adjusted by changing the confinement in the lattice
direction. High-resolution imaging allows us to resolve each site. b, Gain in
quantum metrology is obtained for spin squeezed states exhibiting reduced
fluctuations in one direction (z) and a sufficiently large polarization in the
orthogonal plane (x, y) as depicted on the Bloch sphere. For our system, spin
fluctuations in the z direction translate to atom number difference
fluctuations Dn between two adjacent wells. The polarization of the spin in

the x–y plane is proportional to the phase coherence, Æcos wæ, between the
wells. c, The atom number fluctuations at each site are measured by
integrating the atomic density obtained from absorption images. We
compare a typical histogram showing sub-Poissonian fluctuations in the
atom number difference with the binomial distribution (red curve). The
green curve corresponds to the deduced distribution after subtracting the
photon shot noise, leading to a number squeezing factor of j2

N 5 26.6 dB.
d, The phase coherence is inferred from the interference patterns between
adjacent wells. The histogram shown corresponds to a phase coherence of
Æcos wæ 5 0.9.
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Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their
spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a
measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled
states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a
Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement.
We infer a generalized squeezing parameter of −11:4ð5Þ dB.

DOI: 10.1103/PhysRevLett.112.155304 PACS numbers: 67.85.−d, 03.67.Bg, 03.67.Mn, 03.75.Mn

Entanglement, one of the most intriguing features of
quantummechanics, is nowadays a key ingredient for many
applications in quantum information science [1,2], quan-
tum simulation [3,4], and quantum-enhanced metrology
[5]. Entangled states with a large number of particles
cannot be characterized via full state tomography [6],
which is routinely used in the case of photons [7,8],
trapped ions [9], or superconducting circuits [10,11].
A reconstruction of the full density matrix is hindered
and finally prevented by the exponential increase of the
required number of measurements. Furthermore, it is
technically impossible to address all individual particles
or even fundamentally forbidden if the particles occupy the
same quantum state. Therefore, the entanglement of many-
particle states is best characterized by measuring the
expectation values and variances of the components of
the collective spin J ¼ ðJx; Jy; JzÞT ¼

P
isi, the sum of all

individual spins si in the ensemble.
In particular, the spin-squeezing parameter ξ2 ¼

NðΔJzÞ2=ðhJxi2 þ hJyi2Þ defines the class of spin-
squeezed states for ξ2 < 1. This inequality can be used
to verify the presence of entanglement, since all spin-
squeezed states are entangled [12]. Large clouds of
entangled neutral atoms are typically prepared in such
spin-squeezed states, as shown in thermal gas cells [13],
at ultracold temperatures [14–16], and in Bose-Einstein
condensates [17–19].
Systems with multiple particles may exhibit more than

pairwise entanglement. Multiparticle entanglement is best

quantified by means of the so-called entanglement depth,
defined as the number of particles in the largest nonseparable
subset [see Fig. 1(a)]. There have been numerous experi-
ments detecting multiparticle entanglement involving up to
14 qubits in systems, where the particles can be addressed
individually [9,20–24]. Large ensembles of neutral atoms
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FIG. 1 (color online). Measurement of the entanglement depth
for a total number of 8000 atoms. (a) The entanglement depth is
given by the number of atoms in the largest nonseparable subset
(shaded areas). (b) The spins of the individual atoms add up to the
total spin J whose possible orientations can be depicted on
the Bloch sphere. Dicke states are represented by a ring around
the equator with an ultralow width ΔJz and a large radius Jeff .
(c) The entanglement depth in the vicinity of a Dicke state can be
inferred from a measurement of these values. The red lines
indicate the boundaries for various entanglement depths. The
experimental result is shown as blue uncertainty ellipses with 1
and 2 standard deviations, proving an entanglement depth larger
than 28 (dashed line).
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FIG. 2. Hanbury Brown-Twiss interference and fermionization. (a) Processes connecting the initial and final two-particle states
interfere coherently. Each tunneling step contributes a phase i. For non-interacting bosons, processes of the same length add
constructively (I), while processes di↵ering in length by two steps interfere destructively (II). (b) Weakly interacting bosons
display strong bunching (I). Strong, repulsive on-site interactions cause bosons in one dimension to fermionize and develop
long-range anti-correlations (II). (c) Measured correlator �

i,j

at time ⌧
max

⇡ 2⇡ ⇥ 0.5, averaged over ⇠ 3200 realizations. The
interactions are tuned from weak (u < 1) to strong (u � 1) by choosing V
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, 2.5E
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Figure 2 a): For bosons, the processes bringing both par-
ticles into close proximity of each other add construc-
tively, leading to bosonic bunching, as observed in tunnel
coupled optical tweezers [32], expanding atomic clouds
[31, 33] and photonic implementations of quantum walks
[12, 13].

In our experiment, the bunching of free bosonic atoms
is apparent in single shot images of quantum walks with
two particles starting from adjacent sites in the state
a†0a

†
1|0i. For weak interactions, the two atoms are very

likely to be detected close to each other because of HBT
interference, as shown in raw images in Figure 2 b). We
characterize the degree of bunching using the density-
density correlator �i,j in Figure 2 c), measured at time
⌧max ⇡ 2⇡ ⇥ 0.5. Panel I shows the two-particle correla-
tor for a quantum walk with weak interactions (u = 0.7).
Sharp features are caused by quantum interference and
demonstrate the good coherence of the two-particle dy-
namics. The concentration of probability on and near the
diagonal of the correlator �i,j indicates HBT interference
of nearly free bosonic particles.

We use the sensitivity of the quantum walk to quantum
statistics to probe the “fermionization” of bosonic parti-
cles caused by repulsive interactions in one-dimensional
systems. When such interactions are strong, double occu-

pancies are suppressed by the large energy cost U , which
takes the role of an e↵ective Pauli exclusion principle for
bosonic particles. In the limiting case of infinite,“hard-
core” repulsive interactions, one-dimensional bosonic sys-
tems “fermionize” and show densities and spatial correla-
tions that are identical to those of non-interacting spin-
less fermions [34]. This behavior has been observed in
equilibrium in the pair-correlations and momentum dis-
tributions of large one-dimensional Bose-Einstein Con-
densates [35, 36]. These systems are characterized by
the dimensionless ratio of interaction to kinetic energy �,
and the fermionized Tonks-Girardeau regime is entered
when � is large. For Bose-Hubbard systems below unity
filling, such as ours, the corresponding parameter is the
ratio u = U/J .

We study the process of fermionization in the funda-
mental unit of two interacting particles by repeating the
quantum walk from initial state a†0a

†
1|0i at increasing in-

teraction strengths [19]. Figure 2 c) shows �i,j for sev-
eral values of u. At intermediate values of the interac-
tion u = 1.4 and u = 2.4, the correlation distribution
is relatively uniform, as repulsive interactions compete
with HBT interference. For the strongest interaction
strength u = 5.1, most of the weight is concentrated on
the anti-diagonal of �i,j , corresponding to pronounced



Describing quantum liquids and gases
governed by the general many-body Hamiltonian

H =
NX

i=1

✓
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i + Ui
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+
X

i<j

Vij ,

interaction 
potential

external 
potential

trapped ions with a periodic 
lattice potential

J. Wernsdorfer et al. PRA, 81, 043620 (2010)
quantum nanofluids of helium-4
B. Kulchytskyy et al. PRB, 88, 064512 (2013)



Can we quantify, optimize & 
employ the entanglement in 

quantum fluids?



Quantifying Entanglement 
bipartite Rényi entropies in the spatial continuum

Algorithmic Development 
measurement and benchmarking using path 
integral quantum Monte Carlo

Applications in 1d 
interacting bosons and the connection between 
entanglement and condensate fraction

spatial bipartition particle bipartition



Quantifying entanglement: a prescription
1. Prepare a system in the spatial continuum  
2. Bipartition into two subsystems: A & B 
3. Compute the reduced matrix of region A by tracing 

over all degrees of freedom in region B 
4. Measure the entanglement entropy

B

A

| i ?
=

8
<

:

|'iA ⌦ |�iB
P

a |�aiA ⌦ |�iB⇢A = Tr
B

⇢⇢ ⌘ | ih |

Rényi Entropies

S↵[⇢A] =
1

1� ↵
log Tr ⇢↵A

S(⇢A) = �Tr⇢A log ⇢A



Different bipartitions of itinerant particles
for identical particles in the spatial continuum, various  
ways to partition ground state

Spatial Bipartition 
Constructed from the Fock space of  
single-particle modes

⇢A ! S(A)

| i =
X

nA,nB

cnAnB

���nA

E
⌦
���nB

E

Particle Bipartition 
Artificially label a subset of n particles

| i = |r1 · · · rN i

⇢n ! S(n)n-body density matrix

⇢n =

Z
drn+1 · · · drN h |⇢| i



Example: entanglement in the free Bose gas

Spatial Bipartition 
entanglement is non-zero and is generated via number fluctuations

|BECi ⌘ 1p
N !

⇣
�†
0

⌘N
|0i

C. Simon, PRA 66, 052323 (2002) 
W. Ding and K. Yang, PRA 80, 012329 (2009)

S2(A) ⇠ 1

2

log `A

Particle Bipartition 
Ground state is already in product-form in first quantization

S2(n) = 0



How do interactions change this picture?
“toy” quantum fluid:  1d Bose-Hubbard model

|BECi ⌘ 1p
N !

⇣
�†
0

⌘N
|0i

3 types of candidate ground states
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p
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↵

State Particle 
Entanglement

Spatial 
Entanglement

BEC 0 1/2 log L

Mott L log 2 0

Cat log L log 2

R. Islam et al. (2015)

O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)
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Particle Entanglement 
inaccessible due to the  
indistinguishability of particles  

Spatial Entanglement 
particle number conservation 
prohibits swapping to  
conventional register

Using entanglement as a resource 
requires ability to perform local 
physical operations on subsystems

Can any of this entanglement be put to use?

J. Dunningham, A. Rau, and K. Burnett, Science 307, 872 (2005)
Or is it all just fluffy bunnies?

SWAP
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The Entanglement of Particles
Get around these difficulties by combining 
the two measures. H. M. Wiseman and J. A. Vaccaro, PRL 91, 097902 (2003)

Ep (A) ⌘
X

n

PnS (⇢A,n)

⇢A,n ⌘ 1

Pn
P̂n⇢AP̂n

probability
projection 
operator

Ep(A) < S(A)

Ep(A) > 0 ) S(n) > 0

EP is the maximal amount 
of entanglement that can 
be produced between 
quantum registers by 
local operations.

n

N-n



Back to the Bose-Hubbard model

C. Herdman et al. PRE, 90, 013308 (2014)

Ep(L/2) =
X

n

PnS2(L/2)

peaked at 
transition

S
2

R. Islam et al. (2015)

HBH =
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Quantifying Entanglement 
bipartite Rényi entropies in the spatial continuum

Algorithmic Development 
measurement and benchmarking using path 
integral quantum Monte Carlo

Applications in 1d 
interacting bosons and the connection between 
entanglement and condensate fraction

spatial bipartition particle bipartition



Path integral ground state quantum Monte Carlo

H =
NX

i=1

✓
� ~2
2mi

r2
i + Ui

◆
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Vij ,

Description

Projecting  
trial wave function onto ground state
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space

D. M. Ceperley, RMP 67, 279 (1995) 
A. Sarsa, et. al., J. Chem. Phys. 113, 1366 (2000)

Configurations 
discrete imaginary time worldlines constructed 
from products of short time propagator 

⇢⌧ (R,R0) = hR|e�⌧H |R0i

Observables 
exact method for computing  
ground state expectation values 
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�� T

↵
⌦
 T

��e�2�H
�� T

↵



Computing Rényi entropies in Monte Carlo
Replicate the system

⌦
B1 B2

A1 A2

Permute (swap) the subregions

⌦
B1 B2

A2 A1

⇧A

C. Holzhey, F. Larsen, and F. Wilczek, Nuclear Physics B 424, 443 (1994). 
P. Calabrese and J. Cardy, J. Stat. Mech.: Theor. Exp. 2004, P06002 (2004) 
M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, PRL 104, 157201 (2010) 
R. Melko, A. Kallin, and M. Hastings, PRB 82, 100409 (2010)

Technology imported from QFT to QMC

For α = 2 replicas, expectation value of the permutation operator is a  
measure of the 2nd Rényi entropy.

S2 = � logh⇧Ai



Porting to the path integral representation

Break continuous space paths at the center time slice β

A B

C. Herdman et al. Phys. Rev. B, 89, 140501 (2014) 
C. Herdman et al. Phys. Rev. E, 90, 013308 (2014)

The bipartitions only exist at this time slice.  
Broken links are in A.

space

particle bipartition

spatial bipartition

imaginary time
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exact solution can be computed using Wigner quasi-distributions for bosons or 
fermions

Benchmarking on a non-trivial model
N-Harmonium in 1d 
harmonically interacting and confined bosons

C. L. Benavides-Riveros, I. V. Toranzo, and J. S. Dehesa, JPB 47 195503 (2014)
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QMC Results: Entanglement of Particles

B1B1 A1

maxima as a function 
of interaction strength

The useful entanglement 
is zero for non-interacting 
particles and peaks at 
some value of the 
interaction strength

C. Herdman et al., Phys. Rev. E, 90, 013308 (2014)



Quantifying Entanglement 
bipartite Rényi entropies in the spatial continuum

Algorithmic Development 
measurement and benchmarking using path 
integral quantum Monte Carlo

Applications to 1d bosons 
interactions and the connection between 
entanglement and condensate fraction

spatial bipartition particle bipartition



as σ→0 & σ/c → const. we recover the Lieb-Liniger 
model of delta-function interacting bosons.

Moving towards a physically realizable system

E. H. Lieb and W. Liniger, PR 130, 1605 (1963)

one dimensional short-range interacting bosons

H =
NX
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5

B. Paredes, et al., Nature 429, 277 (2004) 
T. Kinoshita, et al., Science 305, 1125 (2004)

c →∞: Tonks-Girardeau gas

the 1D Bose system is a great challenge, and it is complementary to
the current experiments inwhich bosonic properties are observed in
fermionic quantum gases6–9. The 1D regime is obtained by tightly
confining the particle motion in two directions to zero point
oscillations4,5,10. It was first demonstrated in experiments with
weakly interacting Bose-condensed trapped gases, where g,, 1
(see refs 11, 12). In ref. 13, a tight radial confinement was realized by
using two-dimensional (2D) optical lattice potentials to create an
array of 1D quantum gases. In later experiments with optical
lattices14,15 it has become possible to reach a 1D regime with
g < 1, that is, in between a weakly interacting 1D Bose condensed
gas and a fermionized TG gas. So far, however, it has not been
possible to bridge the last one or two orders of magnitude in g that
could bring the bosonic quantum gas fully into the TG regime.
Larger values of g could either be reached by decreasing the density
of the quantum gas or by increasing the effective interaction
strength between the particles4,5.
In this work, we propose and demonstrate a novel way to achieve

the TG regime. The main point is to include an additional optical
lattice along the 1D gas, which results in an increase of g. For a
homogeneous gas, g can be expressed as g ¼ mg/"2n, where g is the
1D interaction strength,m the mass of a single atom, and " denotes
Planck’s constant divided by 2p. The addition of a periodic
potential along the third axis increases the effective mass, and
thus leads to an increase of g. In fact, in the limit in which only
the first Bloch band is occupied, we have I ¼ Un and K ¼ Jn, where
n is the filling factor, U the on-site interaction energy and J the
tunnelling amplitude, and thus g ¼ U/J. Additionally, in order to
achieve a pure TG regime in a lattice, the filling factor n should
be smaller than unity: otherwise, doubly occupied sites would be
present, and the direct correspondence to the TG gas would be lost
(as in a recent experiment, see ref. 16). Following these ideas, we
have been able to enter the TG regime with g < 5–200. In this
regime, the bosons can be theoretically described using a ‘fermio-
nization’ approach17,18.
For g ! 1, the ground state of N bosons at zero temperature is

described by the many-body wavefunction:

W0ðx1;x2;…;xN Þ/jdet½JiðxjÞ%j; i; j¼ 1;2;…;N ð1Þ
where det denotes the Slater determinant, and J i(x) is the ith
eigenfunction of the single-particle hamiltonian. The presence of
the Slater determinant guarantees that the wavefunction vanishes
whenever two particles occupy the same position in space. However,
the absolute value of the determinant ensures that the wavefunction
for the bosons remains completely symmetric. This wavefunction
reflects the fundamental similarities between strongly interacting
bosons and non-interacting fermions in one dimension, with
properties such as the spatial density distribution, the density–
density correlation function, or the entropy of the gas being the
same as in the case of non-interacting fermions. More interestingly
though, several properties are strongly modified by the presence of
the absolute value of the determinant, leading to a unique behaviour
of, for example, the momentum distribution of the TG gas3. This
can be understood qualitatively in the following way: the bosonic
particles in a TG gas are not allowed to occupy the same position in
space. Owing to this restriction, they are distributed over a more
extended region in momentum space than in the case of an ideal or
weakly interacting Bose gas. On the other hand, in order to keep
themselves apart from each other, they do not need to be in different
momentum states, as would be the case for fermions.

We first describe the experimental realization together with the
measured data, and then provide a detailed theoretical analysis of
the system. In order to reach the regime of low filling factor, we start
with a rather small Bose–Einstein condensate (BEC) of approxi-
mately (3–4) £ 104 87Rb atoms in a magnetic trap. Then the BEC
is loaded into a 2D optical lattice potential (along the y- and z-axes),
such that an array of 1D quantum gases confined to narrow
potential tubes is created (Fig. 1a). The lattice potential is formed
by superimposing two orthogonal standing waves with awavelength
of 823 nm on top of the BEC. In order to transfer the atoms into the
optical potential, the potential depth of the optical lattice is first
gradually increased to a mean final value of 27 E r (Fig. 1b). Here E r

is the recoil energy "2k2/2m, with k describing the wave vector of the
lattice laser light. During this ramp up of the lattice potentials, the
tunnel coupling between the different 1D quantum gases decreases
exponentially. This results in a decoupling of the quantum gases,
such that particle exchange between different tubes is suppressed.
For the maximum lattice depth, the gaussian shape of the laser
beams (160mmwaist) leads to an axial harmonic confinement of the
1D gases with a trapping frequency of q ax < 2p £ 60Hz. This has
been verified by exciting a ‘sloshing’ motion of the thermal cloud
and by parametric heating measurements, which both agree with
the calculated value. Furthermore, the depths of all standing-wave
potentials have been measured by vibrational band spectroscopy19.
For such 1D quantum gases, without a lattice in the axial direction,
we have g < 0.5 near the lattice centre.

After a further hold time of 10ms, we add an optical standing
wave along the axial direction (x axis) in order to increase g. The
intensity of the laser forming this lattice potential (operated at a
wavelength of 854 nm) is ramped up to a final depth Vax of up to
18.5 E r. The axial momentum distribution of the quantum gases is
subsequently probed by suddenly removing all optical andmagnetic
trapping potentials, and by imaging the atom clouds after a time-of-
flight period of 16ms. In order to prevent a strong expansion of
the atom cloud along the propagation axis of the imaging laser beam
(z axis), which would make the experiment more sensitive to
misalignments in the imaging axis, we reduce the confinement
along this axis by lowering the z-lattice potential to 6 E r within a
time of 100 ms before initiating the ballistic expansion sequence.
Also, along the x axis we use a ramp down, which is not fully non-
adiabatic and leads to a narrowing of the gaussian envelope in the
observed momentum distribution by ,20%. This enhances the
number of atoms in the central momentum peak. From the

 

Figure 1 Experimental sequence and momentum profiles. a, Using a 2D optical lattice

potential, we realize an array of 1D quantum gases. b, These quantum gases are created

by first increasing the optical lattice depths along the y and z axes in an exponential ramp

over a time of 160ms (time constant t ¼ 40ms) to a mean final value of 27 E r. After a

further hold time of 10ms at this final lattice depth, we increase the optical lattice potential

along the x axis within a time of 20ms (time constant t ¼ 10ms) to a variable lattice

depth V ax. The quantum gases are then allowed to equilibrate for another 30ms before

we probe the momentum distribution as described in the text. c, Typical time-of-flight
images after a ballistic expansion of the atom clouds over a time of 16ms for an axial

optical lattice depth V ax ¼ 6.5 E r. The white dashed lines denote the area from which

averaged momentum profiles along the x axis are extracted (d).
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Single particle entanglement is related to the 
condensate fraction!                   
the fractional population of particles in the 
zero-momentum state

n0 = lim
|x�x

0|!1
⇢1(x, x

0) ⇠ | 0(x)|2

S. Trotzky, et al., Nat. Phys. 6, 998 (2010)

QMC

experiment

Easily accessible in experiments and simulations!



n0 is the largest eigenvalue of the one-body density matrix 

determines the single copy entropy:  
determines the “max-entropy”:

Single particle entanglement is related to the 
condensate fraction!                   

S1 = � log n0

S2(n = 1) = � log Tr ⇢21

2S1 = �2 log n0

log

1

n0
 S2(n = 1)  2 log

1

n0



Bounding entanglement with the condensate fraction

N = 8

bounds  
from n0

C.M. Herdman et al. PRB, 89, 140501 (2014)

QMC

log

1

n0
 S2(n = 1)  2 log

1

n0



Finite size scaling and universality

O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)

Universal “area”-like law for particle entanglement  
A canonical scaling function for particle entanglement entropy

One-Particle Entanglement S2(n = 1) = � log Tr ⇢21

Luttinger Liquid bosonic one-body density matrix:
⇢1(x, x

0) = h †(x) (x0)i ⇠ 1
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HTLL =
~v
2⇡

Z
dx


K (@

x

�)2 +
1

K
(@

x

✓ � ⇢0)
2
�

S.-I. Tomonaga, Prog. Theo. Phys. 5, 544 (1951) 
J.M. Luttinger, J. Math. Phys. 4, 1154 (1963) 

F.D.M. Haldane,  PRL 47, 1840 (1981)



Bosonic Luttinger liquid scaling

C. Herdman and A.D. arXiv:1412.6529 (2015)
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M. Olshanii and V. Dunjko, PRL 91, 090401 (2003)

S2(n = 1)

S2(n = 2)
Bethe-Ansatz

Testing on the  
Lieb-Liniger model
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Open questions & what’s next
S2 (n) =

n

K
logN + const.+O

✓
1

N1�1/K

◆

have only numerically confirmed n > 1 scaling 

what about other Rényi entropies? 
n = 1 pre-factor for a Fermionic  Luttinger liquid? 

higher dimensions? ab initio simulations? 
relation to fluctuation entanglement? 
entanglement of particles in more realistic systems 
corrections to scaling for spatial bipartitions in the 
continuum?



We can quantify entanglement in 
ultracold Bose gases!
Experimental measurement & optimization 
Bound entanglement via the condensate fraction and learn how to optimize 
the functional entanglement that can be transferred to a register for 
quantum information processing.

Applications to low dimensional field theories 
Scaling of the one-particle entanglement is related to the Luttinger 
parameter of the effective field theory.

http://delmaestro.org/adrian 
http://code.delmaestro.org 
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