Disentangling Tensor Networks

Glen Evenbly
Guifre Vidal

Tensor Network Renormalization, arXiv:1412.0732

Proper consideration of entanglement is important in the study quantum many-body physics

Tensor Network Ansatz: wavefunctions designed to reproduce ground state entanglement scaling

Today: consideration of entanglement in designing a real-space renormalization transformation

Outline: Tensor Network Renormalization

Overview

The set-up: Representation of partition functions and path integrals as tensor networks

Previous approaches: Levin and Nave's Tensor Renormalization Group (LN-TRG), conceptual and computation problems.

New approach: Tensor network renormalization (TNR): proper removal of all short-ranged degrees of freedom via disentanglers

Benchmark results

Extensions

express many-body system as a tensor network:

partition function of 2D classical statistical model

- tensors encode Boltzmann weights
- contraction of tensor network equals weighted sum over all microstates

Euclidean path integral of 1D quantum model

- row of tensors encodes small evolution in imaginary time
- contraction of tensor network equals weighted sum over all trajectories

Goal: to contract the tensor network to a scalar:

Approaches:

- Monte-carlo sampling
- Transfer matrix methods
- Real-space renormalization (coarse-graining)

Goal: to contract the tensor network to a scalar:

Basic idea of RG:

description in terms of very many microscopic degrees of freedom

description in terms of a few effective (low-energy, long distance) degrees of freedom

each transformation removes short-range (high energy) degrees of freedom

initial description

Early real-space RG: Kadanoff's "spin blocking" (1966)

lattice of classical spins

majority vote blocking

coarser lattice

initial description: H(T,J)

renormalized parameters: H(T',J')

···successful only for certain systems

L.P. Kadanoff (1966): "Spin blocking"

spiritual successor

Key change: a more general prescription for deciding which degrees of freedom can safely be removed at each RG step

Levin, Nave (2006): "Tensor renormalization group (LN-TRG)"

L.P. Kadanoff (1966): "Spin blocking"

spiritual successor Key change: a more general prescription for deciding which degrees of freedom can safely be removed at each RG step

Levin, Nave (2006): "Tensor renormalization group (LN-TRG)"

+ many improvements and generalizations:

Xie, Jiang, Weng, Xiang (2008): "Second Renormalization Group (SRG)"

Gu, Levin, Wen (2008): "Tensor Entanglement Renormalization Group (TERG)"

Gu, Wen (2009): "Tensor Entanglement Filtering Renormalization(TEFR)"

Xie, Chen, Qin, Zhu, Yang, Xiang (2012): "Higher Order Tensor Renormalization Group (HOTRG)"

L.P. Kadanoff (1966): "Spin blocking"

spiritual successor Key change: a more general prescription for deciding which degrees of freedom can safely be removed at each RG step

Levin, Nave (2006): "Tensor renormalization group (LN-TRG)"

Today: introduce new method of tensor RG (for partition functions and path integrals) that resolves significant **computational and conceptual problems** of previous approaches

Flaw: each RG step removes some (but not all) of the short-ranged degrees freedom

Consequences:

 Accumulation of short ranged detail can cause computational breakdown; cost scales exponentially in RG step!

 Effective theory still contains unwanted microscopic detail; one does not recover proper structure of RG fixed points

New approach: "Tensor Network Renormalization (TNR)" arXiv:1412.0732

A way of implementing real-space RG that addresses all short-ranged degrees of freedom at each RG step

Advantages:

- Proper RG flow is achieved, TNR reproduces the correct structure of RG fixed points
- Prevents harmful accumulation of short-ranged detail, allowing for a sustainable RG flow:

Outline: Tensor Network Renormalization

Overview

The set-up: Representation of partition functions and path integrals as tensor networks

Previous approaches: Levin and Nave's Tensor Renormalization Group (LN-TRG), conceptual and computation problems.

New approach: Tensor network renormalization (TNR): proper removal of all short-ranged degrees of freedom via disentanglers

Benchmark results

Extensions

Overview: Tensor Networks

bond dimension

Let A_{ijkl} be a four index tensor with $i, j, k, l \in \{1, 2, 3, ..., \chi^{\nu}\}$

i.e. such that the tensor is a $\chi \times \chi \times \chi \times \chi$ array of numbers

Diagrammatic notation:

$$A_{ijkl} \longleftrightarrow l \xrightarrow{k} j$$

Contraction of two tensors:

$$\sum_{j} A_{ijkl} A_{mnoj} \longleftrightarrow l \xrightarrow{k} \stackrel{i}{\longrightarrow} \stackrel{m}{A} \xrightarrow{j} \stackrel{m}{\longrightarrow} n$$

Square lattice network (PBC):

$$\sum_{ijklmn...} A_{ijkl} A_{mnoj} A_{kpqr} A_{ostp} \dots$$

$$\equiv \mathsf{tTr}\left(\bigotimes_{x=1}^N A\right) = \mathsf{Z}$$

Partition functions as Tensor Networks

Square lattice of Ising spins:

Hamiltonian functional for Ising ferromagnet:

$$H(\{\sigma\}) = -\sum_{\langle i,j\rangle} \sigma_i \sigma_j$$

Partition function:

$$Z = \sum_{\{\sigma\}} e^{-H(\{\sigma\})/T}$$

Encode the Boltzmann weights of a plaquette of spins in a four-index tensor

where:

$$A_{ijkl} = e^{(\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_l + \sigma_l \sigma_i)/T}$$

Partition functions as Tensor Networks

Square lattice of Ising spins:

Hamiltonian functional for Ising ferromagnet:

$$H(\{\sigma\}) = -\sum_{\langle i,j\rangle} \sigma_i \sigma_j$$

Partition function:

$$Z = \sum_{\{\sigma\}} e^{-H(\{\sigma\})/T}$$

$$A_{ijkl} = e^{(\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_l + \sigma_l \sigma_i)/T}$$

Partition functions as Tensor Networks

Square lattice of Ising spins:

Hamiltonian functional for Ising ferromagnet:

$$H(\{\sigma\}) = -\sum_{\langle i,j\rangle} \sigma_i \sigma_j$$

 $A_{ijkl} = e^{(\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_l + \sigma_l \sigma_i)/T}$

Partition function:

$$Z = \sum_{\{\sigma\}} e^{-H(\{\sigma\})/T} = t \operatorname{Tr}\left(\bigotimes_{x=1}^{N} A\right)$$

Partition function given by contraction of tensor network

Path Integrals as Tensor Networks

Nearest neighbour Hamiltonian for a 1D quantum system:

$$H = \sum_{r} h(r, r+1) = \sum_{r \text{ even}} h(r, r+1) + \sum_{r \text{ odd}} h(r, r+1)$$
$$= H_{\text{even}} + H_{\text{odd}}$$

Evolution in imaginary time yields projector onto ground state:

$$|\psi_{\rm GS}\rangle\langle\psi_{\rm GS}| = \lim_{\beta\to\infty} [e^{-\beta H}]$$

Expand in small time steps:

$$\lim_{\beta \to \infty} \left[e^{-\beta H} \right] = e^{-\tau H} e^{-\tau H} e^{-\tau H} e^{-\tau H} \dots$$

Suzuki-Trotter expansion:

$$e^{-\tau H} = e^{-\tau H_{\text{even}}} e^{-\tau H_{\text{odd}}} + o(\tau^2)$$

Path Integrals as Tensor Networks

Separate Hamiltonian into even and odd terms:

$$H = \sum_{r \text{ even}} h(r, r+1) + \sum_{r \text{ odd}} h(r, r+1) = H_{\text{even}} + H_{\text{odd}}$$

Expand path integral in small discrete time steps:

$$\lim_{\beta \to \infty} \left[e^{-\beta H} \right] = e^{-\tau H} e^{-\tau H} e^{-\tau H} e^{-\tau H} \dots$$
$$e^{-\tau H} = e^{-\tau H_{\text{even}}} e^{-\tau H_{\text{odd}}} + o(\tau^2)$$

Exponentiate even and odd separately:

Path Integrals as Tensor Networks

encode many-body systems as a tensor network:

- tensors encode Boltzmann weights
- contraction of tensor network equals weighted sum over all microstates

- row of tensors encodes small evolution in imaginary time
- contraction of tensor network equals weighted sum over all trajectories

Outline: Tensor Network Renormalization

The set-up: Representation of partition functions and path integrals as tensor networks

Previous approaches: Levin and Nave's Tensor Renormalization Group (LN-TRG), conceptual and computation problems.

New approach: Tensor network renormalization (TNR): proper removal of all short-ranged degrees of freedom via disentanglers

Benchmark results

Extensions

Levin, Nave (2006)

Tensor renormalization group (LN-TRG) is a method for coarse-graining tensor networks based upon **blocking** and **truncation steps**

Example of blocking + truncation: 2D classical Ising (critical temp)

- take a (4 x 4) block of tensors from the partition function
- contract to a single tensor; each (16-dim) index describes the state of four classical spins
- can the block tensor be truncated?

Levin, Nave (2006)

Tensor renormalization group (LN-TRG) is a method for coarse-graining tensor networks based upon **blocking** and **truncation steps**

Example of blocking + truncation: 2D classical Ising (critical temp)

- take a (4 x 4) block of tensors from the partition function
- contract to a single tensor; each (16-dim) index describes the state of four classical spins
- can the block tensor be truncated? Yes!

Only keeping the largest 30 singular values yields truncation error ($\sim 10^{-3}$):

discard singular values smaller than desired truncation error δ

 $\tilde{\chi} \ll \chi^2$

Tensor Renormalization Group (LN-TRG) works through alternating truncated SVD and contraction steps:

discard singular values smaller than desired truncation error δ

alternative approach:

implement truncation through projector of the form $W^{\dagger}W$ for isometric W

i.e. choose isometry ${\it W}$ to minimise truncation error ${\it \delta}$

does it converge to the expected fixed points?

RG flow in the space of tensors:

$$A^{(0)} \to A^{(1)} \to A^{(2)} \to \cdots \to A^{(s)} \to \cdots$$

Bond dimension χ required for truncation error $< 10^{-3}$:

Cost of iteration: $O(\chi^6)$ $1 \times 10^6 \rightarrow 6 \times 10^7 \rightarrow 4 \times 10^9 \rightarrow > 10^{12}$

Cost of LN-TRG scales exponentially with RG iteration!

RG flow in the space of tensors:

$$A^{(0)} \to A^{(1)} \to A^{(2)} \to \cdots \to A^{(s)} \to \cdots$$

Consider 2D classical Ising ferromagnet at temperature T:

Phases:

 $T < T_C$

ordered phase

 $T = T_C$

critical point (correlations at all length scales)

 $T > T_C$

disordered phase

Encode partition function (temp T) as a tensor network:

Proper RG flow:

Proper RG flow: 2D classical Ising

Numerical results, Tensor renormalization group (LN-TRG):

LN-TRG does not give proper RG flow:

Levin, Nave (2006)

LN-TRG generates an RG flow in the space of tensors

RG flow in the space of tensors:

$$A^{(0)} \rightarrow A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(s)} \rightarrow \cdots$$

LN-TRG can be very powerful and useful numerically but...

- does not reproduce a proper RG flow
- computational breakdown when near or at criticality

can we understand this?

Levin, Nave (2006)

- isometries remove some (but not all!) shortranged correlated degrees of freedom
- LN-TRG fails to remove some short-ranged correlations, which propagate to next length scale

Example: corner-double line (CDL) tensors

Fixed points of LN-TRG

Imagine "A" is a special tensor such that each index can be decomposed as a product of smaller indices,

$$A_{ijkl} = A_{(i_1 i_2)(j_1 j_2)(k_1 k_2)(l_1 l_2)}$$

such that certain pairs of indices are perfectly correlated:

$$A_{(i_1i_2)(j_1j_2)(k_1k_2)(l_1l_2)} \equiv \delta_{i_1j_1} \delta_{j_2k_2} \delta_{k_1l_1} \delta_{l_2i_2}$$

These are called corner double line (CDL) tensors. CDL tensors are fixed points of TRG.

Fixed points of LN-TRG

single iteration of LN-TRG:

Some short-ranged always correlations remain under LN-TRG!

Fixed points of LN-TRG

short-range correlated

The short-range correlated short-range correlated short-range correlated short-range correlated propagated removed

TRG removes some short ranged correlations, but…
others are artificially promoted to the next length scale

- always retains some of the microscopic (short-ranged) details
- can cause computational breakdown when near criticality

Is there some way to 'fix' tensor renormalization such that all short-ranged correlations are addressed?

Outline: Tensor Network Renormalization

The set-up: Representation of partition functions and path integrals as tensor networks

Previous approaches: Levin and Nave's Tensor Renormalization Group (LN-TRG), conceptual and computation problems.

New approach: Tensor network renormalization (TNR): proper removal of all short-ranged degrees of freedom via disentanglers

Benchmark results

Extensions

arXiv:1412.0732

previous RG schemes for tensor networks based upon **blocking**:

i.e. isometries responsible for combining and truncating indices

but blocking alone fails to remove short-ranged degrees of freedom...

...can one incorporate some form of unitary disentangling into a
tensor RG scheme?

Tree tensor network (TTN)

Multi-scale entanglement renormalization ansatz (MERA)

arXiv:1412.0732

arXiv:1412.0732

exact step: insert conjugate pairs of unitaries: $u^{\dagger}u = I$

approximate step: insert conjugate pairs of isometries: $W^{\dagger}W$

exact step: contract

arXiv:1412.0732

is it possible that the additional **disentangling step** is enough to remove all short-ranged degrees of freedom?

Corner double line tensors revisited

Isometries only (LN-TRG)

- can remove some short-ranged correlated degrees of freedom
- but fails to remove others

Corner double line tensors revisited

Corner double line tensors revisited

short-range correlated short-range correlated previous network of tensor RG CDL tensors TNR trivial (product) state TNR coarse-grains a short-range correlated network into a trivial (product) network as desired!

arXiv:1412.0732

slight modification: we want to include the minimal amount of disentangling (sufficient to address all short-range degrees of freedom)

arXiv:1412.0732

arXiv:1412.0732

optimization: choose unitary 'u' and isometric 'w' to minimize the truncation error δ

$$\delta \equiv \left| \begin{array}{c} u \\ A \end{array} \right| - \left| \begin{array}{c} w_w^{\dagger} \\ W \end{array} \right|$$

arXiv:1412.0732

Tensor network renormalization (TNR):

RG for tensor networks designed to address **all short-ranged degrees of freedom** at each step

- works in simple examples (networks with only shortrange correlations)
- does it work in more challenging / interesting cases?
 (such as in critical systems, which possess correlations at all length scales)

Outline: Tensor Network Renormalization

The set-up: Representation of partition functions and path integrals as tensor networks

Previous approaches: Levin and Nave's Tensor Renormalization Group (LN-TRG), conceptual and computation problems.

New approach: Tensor network renormalization (TNR): proper removal of all short-ranged degrees of freedom via disentanglers

Benchmark results

Extensions

Benchmark numerics:

2D classical Ising model on lattice of size: $2^{12} \times 2^{12}$

Sustainable RG flow

Does TRG give a sustainable RG flow?

Old approach (LN-TRG) vs new approach (TNR)

Bond dimension χ required to maintain fixed truncation error ($\sim 10^{-3}$):

LN-TRG:
$$\sim 10 \longrightarrow \sim 20 \longrightarrow \sim 40 \longrightarrow >100$$

TNR: $\sim 10 \longrightarrow \sim 10 \longrightarrow \sim 10 \longrightarrow \sim 10$

Computational costs:

LN-TRG,
$$O(\chi^6)$$
: $1 \times 10^6 \rightarrow 6 \times 10^7 \rightarrow 4 \times 10^9 \rightarrow > 10^{12}$
TNR $O(k\chi^6)$: $5 \times 10^7 \rightarrow 5 \times 10^7 \rightarrow 5 \times 10^7 \rightarrow 5 \times 10^7$

Tensor Renormalization Group (LN-TRG)

RG flow in the space of tensors:

$$A^{(0)} \to A^{(1)} \to A^{(2)} \to \cdots \to A^{(s)} \to \cdots$$

Consider 2D classical Ising ferromagnet at temperature T:

Phases:

 $T < T_C$

ordered phase

 $T = T_C$

critical point (correlations at all length scales)

 $T > T_C$

disordered phase

Encode partition function (temp T) as a tensor network:

Proper RG flow:

Old Approach: Tensor renormalization group (LN-TRG):

New Approach: Tensor Network Renormalization (TNR):

New Approach: Tensor Network Renormalization (TNR):

Converges to one of three RG fixed points, consistent with a proper RG flow

TNR bond dimension:

$$\chi = 4$$

Summary

- We have discussed implementation of real-space RG for tensor networks
- Demonstrated that previous methods (e.g. Levin Nave TRG) do not generate a proper RG flow

cause: failure to address all short-range degrees of freedom at each RG step

Tensor Network Renormalization, arXiv:1412.0732

uses disentangling to address all shortrange degrees of freedom at each RG step

- Proper RG flow: correct structure of RG fixed points
- Computationally sustainable RG flow

future work: implementation in higher dimensions, for contraction of PEPS, for study of impurity CFTs...

Outline: Tensor Network Renormalization

The set-up: Representation of partition functions and path integrals as tensor networks

Previous approaches: Levin and Nave's Tensor Renormalization Group (LN-TRG), conceptual and computation problems.

New approach: Tensor network renormalization (TNR): proper removal of all short-ranged degrees of freedom via disentanglers

Benchmark results

Extensions

TNR yields the MERA

(Evenbly, Vidal, arXiv:1502.05385)

Tensor Renormalization Group (LN-TRG)

VS

Tensor Network Renormalization (TNR)

Analogous to:

VS

Tree tensor network (TTN)

Multi-scale entanglement renormalization ansatz (MERA)

network with PBC

open boundaries?

- Disentanglers and isometries are inserted in conjugate pairs, eventually becoming a part of the coarse-grained tensors
- But a row of unpaired disentanglers and isometries remains on the open boundary…

TNR yields the MERA

(Evenbly, Vidal, arXiv:1502.05385)

exact representation of ground state as a path integral

Approximate representation of ground state (MERA)

coarse-grain as much as possible (subject to leaving indices around the hole untouched)

iteration of TNR Tensor network with open 'hole': many iterations drawn differently

TNR for network with hole:

Logarithmic transform in CFT:

diagonalize transfer operator:

Scaling dimensions from partition function of critical Ising

