
Glen Evenbly 

KITP, May 2015 

Disentangling Tensor Networks 

Guifre Vidal 
Tensor Network Renormalization, arXiv:1412.0732 



Proper consideration of entanglement is important in the study 
quantum many-body physics 

Overview 

Tensor Network Ansatz: wavefunctions designed to reproduce 
ground state entanglement scaling 

PEPS 

MPS 

MERA 

Today: consideration of entanglement in designing a real-space 
renormalization transformation 



Outline: Tensor Network Renormalization 

The set-up: Representation of partition functions and path integrals 
as tensor networks 

Previous approaches: Levin and Nave’s Tensor Renormalization 
Group (LN-TRG), conceptual and computation problems.   

New approach: Tensor network renormalization (TNR): proper 
removal of all short-ranged degrees of freedom via disentanglers 

Benchmark results 

Extensions 

Overview 



partition function of 2D 
classical statistical model 
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• tensors encode Boltzmann weights 

• contraction of tensor network equals 
weighted sum over all microstates 

Overview 
express many-body system as a tensor network: 

• row of tensors encodes small 
evolution in imaginary time 
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Euclidean path integral of 
1D quantum model 

• contraction of tensor network 
equals weighted sum over all 
trajectories 



scalar 

Overview 
Goal: to contract the tensor network to a scalar: 

〈𝜓|𝑜|𝜓〉 

• Monte-carlo sampling 

• Transfer matrix methods 

• Real-space renormalization (coarse-graining)  

Approaches: 

i.e. could represent an 
expectation value in the 
quantum system 



Overview 
Goal: to contract the tensor network to a scalar: 

• Monte-carlo sampling 

• Transfer matrix methods 

• Real-space renormalization (coarse-graining)  

Approaches: 

blocking + 
truncation 

scalar 



description in terms of 
very many microscopic 

degrees of freedom 

Iterative RG 
transformations description in terms of a few 

effective (low-energy, long 
distance) degrees of freedom 

each transformation removes 
short-range (high energy) 

degrees of freedom 

Basic idea of RG: 

Overview 

initial description 
coarser description 



Early real-space RG: Kadanoff’s “spin blocking” (1966) 

lattice of classical spins 

𝐻 𝑇, 𝐽  initial description: 

majority vote 
blocking 

coarser lattice 

𝐻 𝑇′, 𝐽′  renormalized parameters: 

Overview 

…successful only for certain systems 



Levin, Nave (2006) : “Tensor renormalization group (LN-TRG)” 

Key change: a more general prescription 
for deciding which degrees of freedom 
can safely be removed at each RG step 

L.P. Kadanoff (1966): “Spin blocking” 

spiritual 
successor 

Overview 

truncated  
SVD contract 



Levin, Nave (2006) : “Tensor renormalization group (LN-TRG)” 

Key change: a more general prescription 
for deciding which degrees of freedom 
can safely be removed at each RG step 

L.P. Kadanoff (1966): “Spin blocking” 

spiritual 
successor 

Overview 

+ many improvements and generalizations: 

Xie, Jiang, Weng, Xiang (2008): “Second Renormalization Group (SRG)”  

Xie, Chen, Qin, Zhu, Yang, Xiang (2012): “Higher Order Tensor Renormalization 
Group (HOTRG)”   

Gu, Levin, Wen (2008): “Tensor Entanglement Renormalization Group (TERG)”  

Gu, Wen (2009): “Tensor Entanglement Filtering Renormalization(TEFR)”  



Levin, Nave (2006) : “Tensor renormalization group (LN-TRG)” 

Key change: a more general prescription 
for deciding which degrees of freedom 
can safely be removed at each RG step 

L.P. Kadanoff (1966): “Spin blocking” 

spiritual 
successor 

Overview 

Today: introduce new method of tensor RG (for partition functions 
and path integrals) that resolves significant computational and 
conceptual problems of previous approaches 



original 
microscopic 
description 

coarser 
effective 

description 

coarser 
effective 

description 

RG step  RG step  RG step  

Flaw with previous tensor RG methods (such as LN-TRG): 

Flaw: each RG step removes some (but not all) of the short-
ranged degrees freedom 

some short-ranged 
correlation removed 

some short-ranged 
correlation propagated 

still contains 
microscopic 
“baggage” 

Consequences: 
• Accumulation of short ranged detail can cause computational 

breakdown; cost scales exponentially in RG step! 
• Effective theory still contains unwanted microscopic detail; one 

does not recover proper structure of RG fixed points 

Overview 



original 
microscopic 
description 

coarser 
effective 

description 

coarser 
effective 

description 

RG step  RG step  RG step  

all short-ranged 
correlation removed 

New approach: “Tensor Network Renormalization (TNR)”  arXiv:1412.0732 

all short-ranged 
correlation removed 

all short-ranged 
correlation removed 

A way of implementing real-space RG that addresses all short-ranged 
degrees of freedom at each RG step 

Advantages: 

• Prevents harmful accumulation of short-ranged detail, allowing for a 
sustainable RG flow: 

exponential cost scaling 
(previous tensor RG) 

constant cost 
(new approach, TNR) 

• Proper RG flow is achieved, TNR reproduces the correct structure 
of RG fixed points 

Overview 



Outline: Tensor Network Renormalization 

The set-up: Representation of partition functions and path integrals 
as tensor networks 

Previous approaches: Levin and Nave’s Tensor Renormalization 
Group (LN-TRG), conceptual and computation problems.   

New approach: Tensor network renormalization (TNR): proper 
removal of all short-ranged degrees of freedom via disentanglers 

Benchmark results 

Extensions 

Overview 



Overview: Tensor Networks 

𝐴𝑖𝑖𝑖𝑖 
𝑖 

𝑖 

𝑖 

𝑖 𝐴 

Diagrammatic notation: Contraction of two tensors: 
𝑖 

𝑖 

𝑖 𝐴 
𝑚 

𝑛 

𝑜 

𝐴 �𝐴𝑖𝑖𝑖𝑖𝐴𝑚𝑚𝑚𝑖
𝑖

 𝑖 

𝜒 × 𝜒 × 𝜒 × 𝜒 

bond  
dimension 

i.e. such that the tensor is a                    array of numbers   

𝐴𝑖𝑖𝑖𝑖 Let           be a four index tensor with    𝑖, 𝑖, 𝑖, 𝑖 ∈ 1,2,3, … ,𝜒  

Square lattice network (PBC): 

� 𝐴𝑖𝑖𝑖𝑖𝐴𝑚𝑚𝑚𝑖𝐴𝑖𝑘𝑘𝑘𝐴𝑚𝑜𝑜𝑘 …
𝑖𝑖𝑖𝑖𝑚𝑚…

 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝐴 

𝑖 
𝑖 

𝑖 

𝑖 

𝑚 
𝑛 

𝑜 
𝑝 

𝑞 

𝑟 𝑠 

𝑡 

Contracts to a 
scalar: 

 
𝑍 

≡ tTr ⊗
𝑥=1

𝑁
𝐴 = Z 



𝐻 𝜎 = −�𝜎𝑖𝜎𝑖
𝑖,𝑖

 

Hamiltonian functional for 
Ising ferromagnet: 

𝜎𝑖 𝜎𝑖 

𝜎𝑖 𝜎𝑖 

𝜎𝑜 𝜎𝑜 

𝜎𝑘 𝜎𝑘 

𝜎𝑘 𝜎𝑚 

𝜎𝑚 ∈ +1,−1  𝜎𝑚 

𝜎𝑢 𝜎𝑣 

𝜎𝑤 𝜎𝑥 

Square lattice of Ising spins: 

𝑍 = �𝑒−𝐻 𝜎 𝑇⁄

𝜎

 

Partition function: 

Encode the Boltzmann weights of a 
plaquette of spins in a four-index tensor 

𝜎𝑖 𝜎𝑖 

𝜎𝑖 𝜎𝑖 

𝑖 𝑖 

𝑖 𝑖 
𝐴 

𝐴𝑖𝑖𝑖𝑖 = 𝑒 𝜎𝑖𝜎𝑗+𝜎𝑗𝜎𝑘+𝜎𝑘𝜎𝑙+𝜎𝑙𝜎𝑖 𝑇⁄  
where: 

Partition functions as Tensor Networks 



𝜎𝑖 𝜎𝑖 

𝜎𝑖 𝜎𝑖 

𝜎𝑜 𝜎𝑜 

𝜎𝑘 𝜎𝑘 

𝜎𝑘 𝜎𝑚 

𝜎𝑚 ∈ +1,−1  𝜎𝑚 

𝜎𝑢 𝜎𝑣 

𝜎𝑤 𝜎𝑥 

𝐴 

𝐴 

𝐴 

𝐴 𝐴 

𝐴 

𝐴 𝐴 

𝐴 

𝑖 𝑖 

𝑖 𝑖 

𝑞 𝑟 

𝑠 𝑡 

𝑚 𝑛 

𝑜 𝑝 

𝑢 𝑣 

𝑥 𝑤 

𝑍 

𝐻 𝜎 = −�𝜎𝑖𝜎𝑖
𝑖,𝑖

 
𝐴𝑖𝑖𝑖𝑖 = 𝑒 𝜎𝑖𝜎𝑗+𝜎𝑗𝜎𝑘+𝜎𝑘𝜎𝑙+𝜎𝑙𝜎𝑖 𝑇⁄  
where: Hamiltonian functional for 

Ising ferromagnet: 

Square lattice of Ising spins: 

Partition function: 

Partition functions as Tensor Networks 

𝑍 = �𝑒−𝐻 𝜎 𝑇⁄

𝜎

 



Partition function: 

𝐴 

𝐴 

𝐴 

𝐴 𝐴 

𝐴 

𝐴 𝐴 

𝐴 

= tTr ⊗
𝑥=1

𝑁
𝐴  

Partition function given by 
contraction of tensor network 

𝑍 

𝐻 𝜎 = −�𝜎𝑖𝜎𝑖
𝑖,𝑖

 

𝑍 = �𝑒−𝐻 𝜎 𝑇⁄

𝜎

 

𝐴𝑖𝑖𝑖𝑖 = 𝑒 𝜎𝑖𝜎𝑗+𝜎𝑗𝜎𝑘+𝜎𝑘𝜎𝑙+𝜎𝑙𝜎𝑖 𝑇⁄  
where: 

Partition functions as Tensor Networks 

Hamiltonian functional for 
Ising ferromagnet: 

Square lattice of Ising spins: 



𝐻 = �ℎ(𝑟, 𝑟 + 1)
𝑘

 

Nearest neighbour Hamiltonian for a 1D quantum system: 

|𝜓GS〉〈𝜓GS|  = lim
𝛽→∞

𝑒−𝛽𝐻  

Evolution in imaginary time yields projector onto ground state: 

= 𝐻even + 𝐻odd 

= � ℎ(𝑟, 𝑟 + 1)
𝑘 even

+ � ℎ(𝑟, 𝑟 + 1)
𝑘 odd

 

lim
𝛽→∞

𝑒−𝛽𝐻 = 𝑒−𝜏𝐻𝑒−𝜏𝐻𝑒−𝜏𝐻𝑒−𝜏𝐻 … 

Expand in small time steps: 

𝑒−𝜏𝐻 = 𝑒−𝜏𝐻even𝑒−𝜏𝐻odd + 𝑜 𝜏2  

Suzuki-Trotter expansion: 

Path Integrals as Tensor Networks 



𝑒−𝜏𝐻 = 𝑒−𝜏𝐻even𝑒−𝜏𝐻odd + 𝑜 𝜏2  

= 𝐻even + 𝐻odd 𝐻 = � ℎ(𝑟, 𝑟 + 1)
𝑘 even

+ � ℎ(𝑟, 𝑟 + 1)
𝑘 odd

 

Separate Hamiltonian into even and odd terms: 

Expand path integral in small discrete time steps: 

lim
𝛽→∞

𝑒−𝛽𝐻 = 𝑒−𝜏𝐻𝑒−𝜏𝐻𝑒−𝜏𝐻𝑒−𝜏𝐻 … 

𝑒−𝜏𝐻even  𝑒−𝜏ℎ 

𝑒−𝜏𝐻odd 

Exponentiate even and odd separately : 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑒−𝜏ℎ 

𝑟 = 0 1 2 3 4 5 6 7 8 9 10 

≈ 𝑒−𝜏𝐻 

Path Integrals as Tensor Networks 



lim
𝛽→∞

𝑒−𝛽𝐻  

𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 

𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 

𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 

𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 

𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 

𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 𝑒−𝜏ℎ 

Path Integrals as Tensor Networks 

|𝜓GS〉〈𝜓GS|  



partition function of 2D 
classical statistical model 

sp
ac

e 

space 

• tensors encode Boltzmann weights • row of tensors encodes small 
evolution in imaginary time 

• contraction of tensor network equals 
weighted sum over all microstates 

Eu
cl
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ea
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tim

e 

space 

Euclidean path integral of 
1D quantum model 

Overview 
encode many-body systems as a tensor network: 

• contraction of tensor network 
equals weighted sum over all 
trajectories 



Outline: Tensor Network Renormalization 

The set-up: Representation of partition functions and path integrals 
as tensor networks 

Previous approaches: Levin and Nave’s Tensor Renormalization 
Group (LN-TRG), conceptual and computation problems.   

New approach: Tensor network renormalization (TNR): proper 
removal of all short-ranged degrees of freedom via disentanglers 

Benchmark results 

Extensions 



Tensor Renormalization Group (LN-TRG) 
Tensor renormalization group (LN-TRG) is a method for 
coarse-graining tensor networks based upon blocking and 
truncation steps 

𝑊 
𝑆 

𝑉 
singular value 
decomposition 

𝜒 = 256 

Levin, Nave (2006) 

blocking 

𝜒 = 16 

𝐴 

• can the block tensor be truncated? 

Example of blocking + truncation: 2D classical Ising (critical temp) 
• take a  (4 x 4) block of tensors from the partition function  
• contract to a single tensor; each (16-dim) index describes the 

state of four classical spins   



Tensor Renormalization Group (LN-TRG) 
Tensor renormalization group (LN-TRG) is a method for 
coarse-graining tensor networks based upon blocking and 
truncation steps 

Levin, Nave (2006) 

• can the block tensor be truncated? 

Example of blocking + truncation: 2D classical Ising (critical temp) 
• take a  (4 x 4) block of tensors from the partition function  
• contract to a single tensor; each (16-dim) index describes the 

state of four classical spins   

𝑊 
𝑆 

𝑉 

𝜒 = 256 
10 0 10 1 10 2 10 -10 

10 -5 

10 0 
Sp

ec
tr

um
 o

f 
si
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ul

ar
 w
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ts
 

Only keeping the largest 
30 singular values yields 
truncation error (~10-3):  

Yes! 



Tensor Renormalization Group (LN-TRG) works through 
alternating truncated SVD and contraction steps: 

𝜒 dim 

coarser network 

contract 

Tensor Renormalization Group (LN-TRG) 
𝜒 dim 

𝐴 

𝑊 
𝑆 

𝑉 

truncated 
SVD 

𝜒� ≪ 𝜒2 

discard singular values 
smaller than desired 

truncation error   𝛿 

truncated  
SVD 

initial network 

𝜒�  dim 



Tensor Renormalization Group (LN-TRG) 
𝜒 dim 

𝐴 

𝑊 
𝑆 

𝑉 

truncated 
SVD 

𝜒� ≪ 𝜒2 

discard singular values 
smaller than desired 

truncation error   𝛿 

projector acts as a 
(approximate) resolution 

of the identity 

𝐴 
𝐴 

𝜒� 

− 

i.e. choose isometry      
to minimise truncation 
error 

𝛿 ≡ 

𝛿 

alternative approach: 
implement truncation through 
projector of the form          for 
isometric   

𝑊 

𝑊† 

𝑊 𝑊† 
𝑊 

𝑊 



contract 
insert 

projectors  

𝑤 𝑤† 

Tensor Renormalization Group (LN-TRG) 
Levin, Nave (2006) 

initial network coarser network 

contract 
truncated  

SVD 



contract 
insert 

projectors  

𝑤 𝑤† 

Tensor Renormalization Group (LN-TRG) 
𝐴 0  

repeat 

𝐴(1) generates RG flow in 
the space of tensors: 𝐴 0 → 𝐴 1 → ⋯ → 𝐴 𝑜 → ⋯ 

• is this RG flow sustainable? 

• does it converge to the expected fixed points? 

Levin, Nave (2006) 



10 -4 

10 -3 

10 -2 

10 -1 

10 0 

s = 0 s = 2 s = 6 s = 1 

Sp
ec

tr
um

 o
f  
𝐴(𝑜

)  

10 2 10 1 10 0 10 2 10 1 10 0 10 2 10 1 10 0 10 2 10 1 10 0 

RG flow at criticality (2D Ising) with TRG 

Tensor Renormalization Group (LN-TRG) 
RG flow in the 

space of tensors: 𝐴 0 → 𝐴 1 → 𝐴 2 → ⋯ → 𝐴 𝑜 → ⋯ 

~10 ~20 ~40 >100 
Bond dimension    required 
for truncation error < 10-3: 

𝜒 

Cost of iteration:            𝑂 𝜒6  4 × 109 6 × 107 1 × 106 > 1012 

Cost of LN-TRG scales exponentially with RG iteration! 



Consider 2D classical Ising ferromagnet at temperature T: Encode partition 
function (temp T) as 
a tensor network: 

𝐴𝑇
0  𝑇 < 𝑇𝐶  

𝑇 = 𝑇𝐶  

𝑇 > 𝑇𝐶  

ordered phase  

critical point (correlations 
at all length scales) 
disordered phase 

Phases: 

Tensor Renormalization Group (LN-TRG) 
RG flow in the 

space of tensors: 𝐴 0 → 𝐴 1 → 𝐴 2 → ⋯ → 𝐴 𝑜 → ⋯ 

Proper RG flow: 

𝐴order 𝐴disorder 

𝐴(1) 
𝐴(2) 

𝐴(0) 

𝑇 = 0 𝑇 = 𝑇𝐶  

𝑇 = ∞ 

𝐴crit 



disordered 
phase 

𝑇 = 1.1 𝑇𝑐  

Proper RG flow: 2D classical Ising 
Numerical results, Tensor renormalization group (LN-TRG): 

|𝐴 1 | |𝐴 2 | |𝐴 3 | |𝐴 4 | 

𝑇 = 2.0 𝑇𝑐  

LN-TRG converges to 
different fixed point 

tensors 

LN-TRG does not give proper RG flow: 

𝑇 = 0 𝑇 = 𝑇𝐶  

𝑇 = ∞ 

𝐴(1) 𝐴(2) 

𝐴(0) 

does not 
converge! 



Tensor Renormalization Group (LN-TRG) 

RG flow in the 
space of tensors: 𝐴 0 → 𝐴 1 → 𝐴 2 → ⋯ → 𝐴 𝑜 → ⋯ 

𝐴 0  

𝐴 1  

LN-TRG generates an 
RG flow in the space 

of tensors 

LN-TRG can be very powerful and useful numerically but... 

• does not reproduce a proper RG flow 
• computational breakdown when near or at criticality 

can we understand this? 

Levin, Nave (2006) 



Tensor Renormalization Group (LN-TRG) 
Levin, Nave (2006) 

basic step 
of LN-TRG: 

• isometries remove some (but not all!) short-
ranged correlated degrees of freedom 

• LN-TRG fails to remove some short-ranged 
correlations, which propagate to next length scale  

Example: corner-double line (CDL) tensors 



𝐴 = 𝑖 

𝑖 

𝑖 

𝑖 

𝑖1 
𝑖2 

𝑖1 𝑖2 

𝑖2 
𝑖1 

𝑖2 𝑖1 
Imagine “A” is a special tensor such that each 
index can be decomposed as a product of 
smaller indices, 

1 2 1 2 1 2 1 2( )( )( )( )ijkl i i j j k k l lA A=

1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2( )( )( )( )i i j j k k l l i j j k k l l iA δ δ δ δ≡

such that certain pairs of indices are perfectly 
correlated: 

These are called corner double line (CDL) 
tensors. CDL tensors are fixed points of TRG. 

Partition function built from CDL 
tensors represents a state with 

short-ranged correlations 

Fixed points of LN-TRG 



Some short-ranged always 
correlations remain under LN-TRG! 

Fixed points of LN-TRG 

single iteration of LN-TRG: 

CDL tensor 

= 

new CDL 
tensor 



short-range correlated 

Is there some way to ‘fix’ tensor renormalization such that all 
short-ranged correlations are addressed? 

others are artificially promoted to the next length scale 
TRG removes some short ranged correlations, but… 

• always retains some of the microscopic (short-ranged) details  
• can cause computational breakdown when near criticality 

LN-TRG 

short-range correlated 

propagated 

removed 

Fixed points of LN-TRG 



Outline: Tensor Network Renormalization 

The set-up: Representation of partition functions and path integrals 
as tensor networks 

Previous approaches: Levin and Nave’s Tensor Renormalization 
Group (LN-TRG), conceptual and computation problems.   

New approach: Tensor network renormalization (TNR): proper 
removal of all short-ranged degrees of freedom via disentanglers 

Benchmark results 

Extensions 



previous RG schemes for tensor 
networks based upon blocking:  

Tensor Network Renormalization arXiv:1412.0732 

i.e. isometries responsible for 
combining and truncating indices 

but blocking alone fails to remove short-ranged degrees of freedom... 
...can one incorporate some form of unitary disentangling into a 

tensor RG scheme? 

Tree tensor network (TTN) Multi-scale entanglement 
renormalization ansatz (MERA) 



insert 
isometries  

𝑤 𝑤† 

contract 

Tensor Network Renormalization arXiv:1412.0732 

= ≈ 



𝑢† 

= 
𝑢 

Tensor Network Renormalization 

≈ 

arXiv:1412.0732 

exact step: insert conjugate 
pairs of unitaries:  𝑢†𝑢 = 𝐼 
approximate step: insert 
conjugate pairs of isometries:  𝑤† 𝑤 

exact step: contract 

initial square lattice 
tensor network: 

=
 

coarser 
network: 

𝑤 𝑤† 



𝑢† 

= 
𝑢 

≈ 

Tensor Network Renormalization arXiv:1412.0732 

=
 

initial square lattice 
tensor network: 

coarser 
network: 

is it possible that the additional 
disentangling step is enough to remove 

all short-ranged degrees of freedom?  

𝑤 𝑤† 



Corner double line tensors revisited 
Isometries only 

(LN-TRG) 
• can remove some short-ranged 

correlated degrees of freedom  

• but fails to remove others 



Corner double line tensors revisited 
Isometries only 

(LN-TRG) 
example: corner double 

line (CDL) tensors 

CDL tensor 
new CDL 
tensor 

Isometries and 
Disentanglers (TNR) 

CDL tensor 
uncorrelated 

(product) 
tensor 



trivial (product) state 
TNR 

previous 
tensor RG 

short-range correlated short-range correlated 

Corner double line tensors revisited 

network of 
CDL tensors 

TNR coarse-grains a short-range 
correlated network into a trivial 
(product) network as desired! 



𝑢† 

= 
𝑢 

𝑤 𝑤† 

≈ 

Tensor Network Renormalization arXiv:1412.0732 

initial square lattice 
tensor network: 

coarser 
network: 

slight modification: we want to 
include the minimal amount of 

disentangling (sufficient to address 
all short-range degrees of freedom) 

=
 



𝑢† 

= 
𝑢 

≈ 

Tensor Network Renormalization arXiv:1412.0732 

=
 

≈ 

Singular value 
decomposition 

Contract 

𝐴(s+1) 

= 

𝑤 𝑤† 

𝐴(s) 



𝑢† 

= 
𝑢 

≈ 

Tensor Network Renormalization arXiv:1412.0732 

=
 

𝑤 𝑤† 

𝐴(s) 

optimization: choose unitary ‘u’ 
and isometric ‘w’ to minimize the 
truncation error 𝛿 

− 
𝐴 𝐴 

𝑢 
𝛿 ≡ 

𝑤† 𝑤 
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Tensor network renormalization (TNR):  
RG for tensor networks designed to address all short-ranged 
degrees of freedom at each step  

• works in simple examples (networks with only short-
range correlations) 

• does it work in more challenging / interesting cases? 
(such as in critical systems, which possess correlations 
at all length scales) 
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2D classical Ising model on lattice of size:  212 × 212 



Does TRG give a sustainable RG flow? 
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RG flow at criticality 

LN-TRG 

TNR 

Sustainable RG flow 

4 × 109 6 × 107 1 × 106 > 1012 
Computational costs: 

TNR              :      
LN-TRG,             : 

5 × 107 5 × 107 5 × 107 5 × 107 
𝑂(𝜒6) 
𝑂(𝑖𝜒6) 

TNR: ~10 ~10 ~10 ~10 

LN-TRG: ~10 ~20 ~40 >100 

Bond dimension     required to maintain 
fixed truncation error (~10-3): 

𝜒 

Old approach (LN-TRG) 
vs new approach (TNR) 

exponential 

constant 



Consider 2D classical Ising ferromagnet at temperature T: Encode partition 
function (temp T) as 
a tensor network: 

𝐴𝑇
0  𝑇 < 𝑇𝐶  

𝑇 = 𝑇𝐶  

𝑇 > 𝑇𝐶  

ordered phase  

critical point (correlations 
at all length scales) 
disordered phase 

Phases: 

Tensor Renormalization Group (LN-TRG) 
RG flow in the 

space of tensors: 𝐴 0 → 𝐴 1 → 𝐴 2 → ⋯ → 𝐴 𝑜 → ⋯ 

Proper RG flow: 

𝐴order 𝐴disorder 

𝐴(1) 
𝐴(2) 

𝐴(0) 

𝑇 = 0 𝑇 = 𝑇𝐶  

𝑇 = ∞ 

𝐴crit 



𝑇 = 2.0 𝑇𝑐  

disordered 
phase 

𝑇 = 1.1 𝑇𝑐  

Proper RG flow: 2D classical Ising 
Old Approach: Tensor renormalization group (LN-TRG): 

|𝐴 1 | |𝐴 2 | |𝐴 3 | |𝐴 4 | 

CDL tensor 
fixed points 
still contain 
microscopic 
“baggage” 

New Approach: Tensor Network Renormalization (TNR): 

𝑇 = 1.1 𝑇𝑐  

𝑇 = 2.0 𝑇𝑐  

fixed points contain only 
universal information 
about the phase 



𝑇 = 0.9 𝑇𝑐  
sub-critical ordered (Z2) 

fixed point 

𝑇 = 𝑇𝑐  

critical critical (scale-
invariant) fixed 

point 

𝑇 = 1.1 𝑇𝑐  
super-critical disordered 

(trivial) fixed 
point 

|𝐴 1 | |𝐴 2 | |𝐴 3 | |𝐴 4 | 

• Converges to one of three RG fixed points, consistent with a proper RG flow 

Proper RG flow: 2D classical Ising 
New Approach: Tensor Network Renormalization (TNR): 



Proper RG flow: 2D classical Ising 

𝑇 = 1.002 𝑇𝑐  
more difficult! 

|𝐴 1 | |𝐴 2 | |𝐴 3 | |𝐴 4 | 

|𝐴 5 | |𝐴 6 | |𝐴 7 | |𝐴 8 | 

|𝐴 9 | |𝐴 10 | |𝐴 11 | |𝐴 12 | 

𝜒 = 4 

TNR bond 
dimension: 



|𝐴 1 | |𝐴 2 | |𝐴 3 | |𝐴 4 | 

|𝐴 5 | |𝐴 6 | |𝐴 7 | |𝐴 8 | 

|𝐴 9 | |𝐴 10 | |𝐴 11 | |𝐴 12 | 

𝑇 =  𝑇𝑐  
critical point: 

𝜒 = 4 

TNR bond 
dimension: 

Proper RG flow: 2D classical Ising 



Summary 
• We have discussed implementation 

of real-space RG for tensor networks  

• Demonstrated that previous 
methods (e.g. Levin Nave TRG) do 
not generate a proper RG flow 

cause: failure to address all short-range 
degrees of freedom at each RG step 

uses disentangling to address all short-
range degrees of freedom at each RG step 
  

Tensor Network Renormalization, arXiv:1412.0732 

𝑢 
𝑢† 

• Proper RG flow: correct structure of RG fixed points   

• Computationally sustainable RG flow 

future work: implementation in higher dimensions, for 
contraction of PEPS, for study of impurity CFTs... 
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Tensor Renormalization 
Group (LN-TRG) vs 

Tensor Network 
Renormalization (TNR) 

Tree tensor network (TTN) Multi-scale entanglement 
renormalization ansatz (MERA) 

Analogous to: 

vs 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 



network with PBC 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 

evolution in 
imaginary 

time 

1D lattice in space 

|𝜓GS〉 
open boundaries? 



• Coarse-grain while leaving boundary indices untouched 

• Disentanglers and isometries are inserted in conjugate pairs, 
eventually becoming a part of the coarse-grained tensors 

• But a row of unpaired disentanglers and isometries 
remains on the open boundary… 

open boundary 

𝑢† 
𝑢 

open boundary open boundary 

row of unpaired 
unitaries 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 



TNR applied to open boundary tensor 
network generates a MERA! 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 

open boundary 



open boundary 

exact representation of ground 
state as a path integral 

Approximate representation 
of ground state (MERA) 

|𝜓GS〉 
TNR 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 



TNR 

MERA for finite temperature 
thermal state 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 

open boundary 

𝑒−𝛽𝐻 

open boundary 



iteration 
of TNR Tensor network 

with open ‘hole’: 

coarse-grain as much as possible 
(subject to leaving indices 

around the hole untouched) 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 



many 
iterations 

drawn 
differently 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 

iteration 
of TNR Tensor network 

with open ‘hole’: 



punctured plane cylinder 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 

TNR for network with hole: 

Logarithmic 
transform in CFT: 



0 

1 

2 

3 

4 

5 
Exact 
𝜒 = 4 

1/8 

1+1/8 

2+1/8 

3+1/8 

4+1/8 

Scaling dimensions from partition 
function of critical Ising 

TNR yields the MERA (Evenbly, Vidal, arXiv:1502.05385) 

diagonalize transfer operator:  
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