Entanglement Detection by Interfering Quantum Many-body Twins

K. Rajibul Islam Harvard University

Kavli Institute for Theoretical Physics

Santa Barbara, Apr 14, 2015

HARVARD UNIVERSITY , MIT CENTER FOR ULTRACOLD ATOMS

Entanglement in Many-body Physics

Novel states of matter:

Order beyond simple broken symmetry Example: Topological order, spin liquid, fractional quantum Hall Characterized by quantum entanglement !

 Correlations near quantum critical points – scaling laws of entanglement

Challenge:

Entanglement not detected in traditional CM experiments Entanglement in ultracold atom synthetic quantum matter?

Quantum gas microscopy

Coherent control

Renyi entropy

Quantum gas microscope

Bakr et al., Nature 462, 74 (2009), Bakr et al., Science.1192368 (June 2010)

Quantum gas microscope

... and the whole apparatus

Single site parity Imaging

Addressing individual atoms

Arbitrary beam shaping

- Weitenberg et al., Nature 471, 319-324 (2011) Zupancic, P., Master's Thesis, LMU Munich/Harvard 2013
- Cizmar, T et al., Nature Photonics 4, 6 (2010)

High-order Laguerre Modes

Laguerre-Gauss profile

Quantum Gas Microscope

Versatile number state preparation

Low entropy Mott Insulator

Hermite-Gauss repulsive potentials

High fidelity state preparation

Quantum gas microscopy

Coherent control

Renyi entropy

Single-Particle Bloch oscillations

P. M. Preiss et al, Science 347, 1229 (2015)

Single-Particle Bloch oscillations

• Temporal period
$$T_B = \frac{2\pi}{F}$$
 , spatial width $L_B = \frac{4J}{F}$

- Delocalized over ~ 14 sites = $10\mu m$.
- Revival probability 96(3)%

P. M. Preiss et al, Science 347, 1229 (2015)

Bloch oscillations of two atoms

Two atoms starting on same site

Weak interaction

(I) u = 0.3

- Independent oscillations
- Clean revival

- Complex dynamics
- Asymmetry

- Bloch oscillations of pairs
- Frequency-doubled BO

P. M. Preiss et al, Science 347, 1229 (2015)

Also see : R. Khomeriki *et al.,* PRA **81** (2010), G. Corrielli *et al.*, Nature Comm. **4** (2013); F. Meinert *et al.*, Science **344**, 1259 (2014)

Quantum gas microscopy

Coherent control

Renyi entropy

How to detect entanglement in experiments?

- Not accessible in conventional solid state materials fast time scales, limited control at the single particle level
- Synthetic 'engineered' matter with cold atoms!
 - ✓ Controllable Hamiltonian
 - ✓ Long decoherence times
 - ✓ Accessible time scales
 - ✓ Detection at the single atom level

• Entanglement in Spin systems

How to detect entanglement in experiments?

$$|\psi\rangle = |10\rangle - |01\rangle$$

State Tomography

- Exponentially hard
- No general scheme for other systems

How to detect entanglement in experiments?

Entanglement Witness

$$|\psi_{GHZ}\rangle = |000...0\rangle + |111...1\rangle$$

T. Monz et al, PRL 106, 130506 (2011)

Also see : Entanglement generated from spin squeezing, Vuletic group (Nature 2015)

Entanglement in the motional degree of freedom

'Quantum compare' two copies

Hong-Ou-Mandel interference

No coincidence detection for **identical** photons

Hong C. K., Ou Z. Y., and Mandel L. Phys. Rev. Lett. 59 2044 (1987)

Beam splitter operation: Rabi flopping in a double well

Two bosons on a beam splitter

Hong-Ou-Mandel interference

limited by interaction

HOM-Interference of Many-Body States

How "identical" are the **particles**?

VS.

How "identical" are the **states**?

If $|\Psi\rangle_1 = |\Psi\rangle_2$, deterministic number parity after beam splitter

Alves and Jaksch, PRL **93** (2004) Daley et al., PRL **109** (2012)

HOM-Interference of Many-Body States

Alves C M, Jaksch D, PRL 93, 110501 (2004), Daley A J et al, PRL 109, 020505 (2012)

Measuring many-body entanglement

Mott Insulator

Superfluid

Measuring many-body entanglement

Mott Insulator

Ref: Alves C M, Jaksch D, PRL 93, 110501 (2004), Daley A J et al, PRL 109, 020505 (2012)

Measuring many-body entanglement

Mott Insulator

$$\rho_A = \operatorname{tr}_B\{\rho\} = |\Psi_A\rangle \otimes \langle \Psi_A|$$
$$S_n(\rho_\alpha) = \frac{1}{1-n} \log \operatorname{Tr}\{\rho_\alpha^n\}$$
$$S(\rho) = -\log \operatorname{Tr}\rho^2$$

$$\mathrm{Tr}\rho_A^2 < \mathrm{Tr}\rho_{AB}^2$$

$$S_A > S_{AB}$$

Subsystems are entangled

Ref: Alves C M, Jaksch D, PRL 93, 110501 (2004), Daley A J et al, PRL 109, 020505 (2012)

Entanglement formation in the ground state

Mutual Information

Mutual information

Boundary effect

Non equilibrium: Quench dynamics

Outlook

- **Scaling** of entanglement entropy and mutual information probe critical points, violation of area law etc.
- Dynamical phenomena with entanglement MBL phase.
- Overlap of two wave functions $\langle V \rangle = \text{Tr}\rho_1 \rho_2$ Sensitivity to perturbation signaling quantum phase transitions.
- Higher order Renyi entropies by interfering more than two copies.

Markus Greiner

Rubidium lab: Ruichao Ma **Philipp Preiss** Eric Tai Alex Lukin Matthew Rispoli

Lithium lab: **Florian Huber**

Maxwell Parsons Anton Mazurenko Christie Chiu Sebastian Blatt Erbium lab: Anne Hebert Aaron Krahn Susannah Dickerson

Thank you!