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The c-theorem

A deep problem in QFT is how to define a ‘good’
measure of the number of degrees of freedom

which decreases along RG flows and is stationary
at fixed points.

* |In two dimensions this problem was beautifully
solved by Alexander Zamolodchikov who, using
two-point functions of the stress-energy tensor,
found the c-function which satisfies these
properties.



At RG fixed points the c-function coincides with the
Virasoro central charge, which is also the Weyl
anomaly ey = _ SR

Sa 12
Determines the thermal free energy.
Determines the EE of a segment of size r Holzhey, Larsen, Wilczek

. C
b(r) — E l(;}g(r/é) + Cg
C,r < €, follows from boost invariance and SSA casini, Huerta

S(A)+S(B) > S(ANnB)+ S(AU B)

The central charge can also be found using the 2-d CFT
on the sphere of radius R:

F=-log Z=-c/3 log R



The a-theorem

In d=4 there are two Weyl anomaly coefficients
(T,) = — (Hibd“45£b+*ﬁz) l(w)(gbd

10"2
One of them, called a is proportional to the 4-d
Euler density. It can be extracted from the
Euclidean path integral on the 4-d sphere:

F=-logZ=alog R
Cardy conjectured that the a-coefficient
decreases along any RG flow.

A proof was provided a few years ago. «omargodski

Schwimmer



The F-theorem

How do we extend these successes to odd
dimensions where there are no anomalies?
This is interesting, especially in d=3 where
there are many CFTs, some of them describing
critical points in statistical mechanics and
condensed matter physics.

The free energy on the 3-sphere F=-1n|Zs

In a CFT, F is a well-defined, regulator
independent quantity (there are no Weyl
invariant counter terms).

F-theorem: FIR < FUV Jafferis, IK, Pufu, Safdi



The Entanglement Connection

 Remarkably, -F is the universal long range
entanglement entropy across a circle of radius
Rin any 2+1 dimenSiOnal CFT. Casini, Huerta, Myers

27 R
S(R)=a""" — F

€
* Using the language of EE, the F-theorem was

formulated and its proof was found. myers, sinha;

Casini, Huerta

* The c-function used in the proof is the
Renormalized Entanglement Entropy (REE). v,

Mezei F(B) — _S(R) + BSI(B)




Non-Stationarity

* For some RG flows the REE is non-stationary,

e.g. for the massive free scalar field. i, nishioke,

Pufu, Safdi 1 LY ;
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Calculating F

* The simplest CFT’s involve free conformal
scalar and fermion fields. Adding mass terms
makes such a theory flow to a theory with no

massless degrees of freedom in the IR where
F=0.

* For consistency with the F-theorem, the F-

values for free massless fields should be
positive.



Conformal Scalar on S@

* |[n any dimension

1 . d— 2
Fg = —log|Zs| = 5 log det [,L.{.DZOS] Og=-V?+ d— 1)3

* The eigenvalues and degeneracies are

—1\ 4 d—1)(n+d—2)
An = ”“"u —E n >0 My = (2n + )_('”+ )
(d—1)!n!

2 4 -

18 d d

~ n=0

e Using zeta-function regularization in d=3,

IR 6\ T
- 15 (21022- 25 ~ 0638

m

Fo- 24 [2C(s ~2,1/2)+ 2 1/2)]

s=0



* Furthermore, it is possible to derive an
integral representation valid in continuous
dimension d:

1 . 1
F, = 5 log det (—Fz + Ed(‘d — 2))

) 1 ! -f I
= - / duwsinmu ({— + u) [ ((— — u)
sin(55) (L +d) Jo 2 2

* Near even d, it has simple poles whose
coefficients are the a-anomalies.

* Forexample,in d=4—¢

1
Fq —_— . o
90¢ ’



Slightly Relevant Operators

* Perturb a CFT by a relevant operator of
dimension A — J— ¢

S =25,+ AD/ddx\/EO(x)

* The path integral on a sphere is

log
n!

Z0)| _ 5~ ()" [ _
Z0)| =2 o / dd""‘”‘/@'”/ A 2nVG(O(a1) -+ Oza))o

 The 1-pt function vanishes.



 The 2- and 3-pt function are determined by

conformal invariance in terms of the chordal
distance

O s(ay) sy, 2) T s(z )T

* The change in the free energy is

NN
SF(o) = F(No) = F(0) = =22 L+ 215 + O(N))

- | | \\ (QQ_)_E,?T&—I-LI'Q T %
I, = /ddI\/G/ddyvﬁ{O(I)O(y)ﬁD — 9d—1 T ((d+1-)

I = / Az G / Ay G f A’z G (O(2)0(y)O(2)), = i (=3 32)
T(d) T (u)



* The beta function for the dimensionless coupling

IS g = )\ﬂ_—f

, d df2
B(g) = p=r = —eg + —

i - (%) Cg* + O(g*)

* Integrating the RG equation

Crd/2
Mo(2a) = g + 21 0(g?
0(2a) =g EP(%)Q (g7)

) vl Qratl 1, 1 .
0F(g)=(-1)= ——eg* + = 693+@(g4)
d! 2 3r(§)
dF’ dr1 2mdtl
7 = CVF =89 + 0

* This “F-function” is stationary at the fixed points.



* There exists a robust IR fixed point at
[ (5)e

9 = Lang +O(€)
 The 3-sphere free energy decreases

el

* A similar calculation for d=1 provided initial
evidence for the g-theorem conjectured by
Affleck and Ludwig.

* For a general odd dimension, what decreases
along RG flow is i, pufu, safd

d+1

F=(=1)%F=(=1)7 log Zg



Double-Trace Flows

* |f we perturb a large N CFT by a relevant
double-trace operator, it flows to another
fixed point in the IR

/DOE‘XP( S[]— — ddI\/_(f'2>

e Ifin the UV the dimension of ®is A, in the IR it
isd- A

* F can be calculated using the Hubbard-
Stratonovich method

£ _ ! o ex Iy — 0“4+ o0d
Z_'D_fDﬂexp(ﬁfdd;r\/aaz)/D <.4p[/d \/_<2)\[;. * I)]>G




* The change in F between IR and UV is of order
1 and is computable cubser, ik; biaz, born

i 1 —
0Fa =3 > My(l) log

['(l+A) T(l+d—1)2+d—1)
(F(d +1 - A)) Ma(l) = I'T(d)

=0
* |In all dimensions d

A—d d d
- ['(2—u (24w
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0 F(l—u—g) T(1+15—§)

1 A-g f. -x
= - / duwsmmul ((— + u) [ ((— — u)
sin(757 )1 (1 +d) Jo 2 2

* Ford=3 3/2

O0Fn = _%L dz(z —1)(z — g)(i‘ — 2) cot(mzx)

§



 The change in free energy is negative, in
support of the F-theorem

GF(A)

* The particular case A=1 corresponds to the
critical O(N) model

0FA—1 = ——
A=1 3



O(N) Model

e The critical O(N) model is obtained via a
double-trace perturbation of the theory of N
free real scalars

5‘[&;] — ;/dﬂ [3(1) 3{1} +m (I:- + % ((I} {I})El

e Using our free field and double-trace results

_N ¢@3)) <3 .
Fcnt - 16 (21 '[ :] _)) ) Q2 —I—O{lfﬁ)

e A further relevant perturbation takes it to the
Goldstone phase where

N-1 (3
F(: old = T (2 1(!2[2) — 37—})



* The flow from the critical to the Goldstone
phase provided a counter-example to the
proposal that the thermal free energy
decreases along RG flow. sachdev

* Yet, there is no contradiction with the F-
theorem since for large N

1 .
FGD]dSt—U]‘lE‘ — Fcrit- — _E (2 IDE(Z) — 5 9 ) ~ —0.0486




Interacting O(N) models in d>47?

* The scalar model with 3(#'¢)? interaction is IR trivial in
d>4, but it has unitary large N UV fixed points for 4<d<6

(Parisi ’75). Can be seen by doing large N expansion in
the Hubbard-Stratonovich approach

2
d i_ 2
S = /d ( (00")* + Jd)cb 4)\)

For d>4, the quadratic term for o can be dropped in the
UV, and one finds a large N CFT where the dimension of
the singlet scalar operator c ~ ¢'¢' is 2+0(1/N), as
before. This is above the unitarity bound for d<®6.



Interacting O(N) model in 4<d<6

Is there an alternate description of this interacting scalar
CFT as a more conventional IR fixed point of some other
theory?

In the large N approach, we see that A=2+0(1/N)
approaches the free field value as d->6. This suggests to
look for a theory with N+1 scalars near d=6.

Proposal: work in d=6-€ and look for IR fixed points in the
cubic O(N) symmetric theory Fei, Giombi, IK
1 1 .. 1 , 1 )

a9 1i)2 a9 )2 | 102 g
L= T)(O,U-@*J )" + 5(0;;0) + 5!&!10(&--3 )" + 6{}26’

Interactions are relevant in d<6. The theory is free in the
UV, and can have non-trivial IR fixed points.



Perturbative fixed points in d=6-€

The one-loop beta functions in d=6-€

5, — 9 (V= 8)gi — 129102 + 919

> T 12(47)?

egy  —ANGE + Ng2gy — 3g3
By = — ‘QE n 9 §%Q2 o

> TEESE

At large N, one finds a unitary, IR stable fixed point at
real couplings

Ge(4m)3

.22 . Ge(4m)3

122
N N

* —
g1 —



Perturbative fixed points in d=6-€

* The conformal dimensions of operators at the IR fixed point can
be computed to any order in the 1/N expansion

d e, 1 (g7) d e 1 N(g)*+(g)
A, =— 1 + Voo = ) — 4+ —_— A — N =9 _ NGy Y3
$ 73 ¢ > T @n?E 6 Bo=g - 1+we=2"5+5 13
_ 5 € € 44  1936¢ oy 40¢ N 6800¢
) + N T N2 + N3 T N N N2

 These match the known large N results of A.N. Vasiliev et al.
expanded in d=6-€

 Dimensions of some composite operators also checked to agree
with known large N results Lang, Ruhl; Petkou

* This is a non-trivial check that the IR fixed points of the cubic
theory in d=6-€ indeed provide an alternative "UV-complete”
description of the UV fixed points of the quartic scalar field
theory in 4<d<6.



Three loop calculations

 We have checked this agreement at higher orders in €.

* Three-loop calculation of the beta functions and scaling
dimensions Fei, Giombi, IK, Tarnopolsky
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Oilgn.m2) = —5m + ([N = 8)gi — 120192 + 3)
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A test of the 5d F-theorem

* It was conjectured that for any odd-dimensional CFT the
quantity IK, Pufu, Safdi

- d+1

F=(=1)7F=(=1)7 log Zs

should decrease under RG flow Fpyv > Fir

e Using our results on the d=5 critical O(N) models, we can
provide a test of this 5d F-theorem. The two descriptions as
either the IR fixed point of the cubic theory or UV fixed point of
the quartic theory imply that F should satisfy

ﬂrﬁfree se. < j;::c:rit. < (E\'T + 1)ﬁ,frﬁ‘fﬁ SC.
log 2 . ¢(3)  15¢(5)

128 12872 25674
free energy of a 5d free conformal scalar.

~ 0.00574 is minus the

Where ﬁfree sc. —



In d=5, we can compute F_., in the large N expansion using the
Hubbard-Stratonovich auxiliary field. The result is Giombi, ik, Safdi

e 3¢(5) + m((3) 1
F{:rit. — i\rFfree sC. + 96’}";"2 + O N

The O(1) correction is positive, so that the left side of the
inequality N Fhee o < Fuir. < (N + 1) Fhree 5. 15 Satisfied.
The right side is also satisfied, because

3CE)+TCE) ~ (0).001601

9672

is smaller than

- ~log2 - ¢(3)  15¢(5) .
Ffree sc. — 198 + 128'}1‘2 256'}'T4 ~ ().00574




Sphere free energy in continuous d

We may study dimensional continuation of the sphere
free-energies. Is there an interpolation between F-
theorems in odd and a-theorems in even d?

A natural quantity to consider is s. Giombi, i

e

F =sin(nd/2)log Zga = —sin(nwd/2)F
In odd d, this reduces to

d+1

~ d—1
F=(-1)7 F=(-1)7 log Zg

In even d, log Z has a pole in dimensional
regularization whose coefficient is the Weyl a-
anomaly. The multiplication by sin(7d/2) removes it.

A~

Therefore, F smoothly interpolates between a-
anomaly coefficients in even and " F-values” in odd d.



Free conformal scalar in continuous d

* Forinstance, for a free conformal scalar on S¢

. 1 ! d d
F(1+d)/{] UUSITU (2—|—u) (2 u)

* This is positive for all d and smoothly interpolates between a
and F £

\

log2) _ 3{03))
8 16 7%

L ~
180 ~

(B) _ 154065)  log®)] ™~
128 2 256 128 ~

1512 |




Generalized F-theorem in continuous d?

Based on the known F- and a-theorems, it is natural to
ask whether

FUV - F{R

holds in general dimension d.

We have calculated F in various examples of CFTs that
can be defined in continuous dimension, including
double-trace flows in large N CFTs and perturbative
Wilson-Fisher fixed points in the epsilon-expansion.

In all unitary examples that we considered, we find
that F indeed decreases under RG flow. For non-
unitary fixed points, the inequality £, > F,, does not
have to hold.



Cubic fixed points in d=6-€
* For example, consider our cubic theory

1 . 1 1 . 1 ‘

L= 5(aﬂ@%)2 - Q(aﬁ,cr)Q + §g1a(®"')2 — EQQO’B
After mapping to the sphere, the leading contribution to the free
energy is given by the 2-point functions of the perturbing operators

integrated over S9. Using the integral cardy

oy 2T (42 A)
d{f f_f N QR 2(d—A) 2
[ ot s = o8 L(54)T(d-2)

2

and going to the IR fixed point, we find

m 3(91)"N + (93)°

F=(N o
WA DE =580~ (amp

€ + O(ES)




* For the unitary IR fixed points that exist for N>N_., we see
that F decreases from the UV fixed point (N+1 free
scalars) to the IR.

* For non-unitary fixed points with imaginary couplings,
such as in the single scalar model introduced by Michael

Fisher to study the Yang-Lee edge singularity, the F
conjecture violated.

* Using the large N methods, one can also show that the
inequalities N Fhee sc. < Fuit. < (N + 1) Fiee 5. hold to
leading order in 1/N in the full range 4<d<6 (and are
violated for d>6 where the CFT becomes non-unitary).



The fact that £ is a smooth function of dimension suggests
that, in the spirit of the Wilson-Fisher € expansion, it may
provide us with a useful tool to estimate the value of F for
interacting CFTs.

Consider the 3d Ising model, and more generally the O(N)
Wilson-Fisher CFTs in d=3.

They are strongly coupled CFTs in d=3, but they have a
perturbative description in d=4-€.

We can compute the sphere free energy perturbatively and
extrapolate the result to e=1 to estimate the value of F.



Wilson-Fisher O(N) theory in d=4-¢

i L, A
S = /dd;r. (E (c")ﬂgﬁg)g + f{”o”ojg)

N+8., 3GN+14)
872 GAmd
S72 24(3N + 14)n?

TN T (N8P

3= —e\+ A2

* Carrying out the renormalization procedure on the sphere
(Brown-Collins ‘80, Hathrell ’82...) we find

F— NE(e)— ? (N+2), 7 N(N+2)(13N?+ 370N + 1588)

4 O 5
NE82t 6D (N +8)! €+ OE)

* Extracting precise estimates from the e—expansion typically
requires a resummation technique, like Pade approximants
Ag — Allﬂ + 142.1’2 + ...+ iq.ml’m

Pade;,, . (z) =
Adeqm, () 1+ Bz + Byx?2 + ...+ B,z




Disk EE for the 3d Ising model

We expect that £ should be a smooth function of d, such that
near d=4 it reproduces the perturbative e—expansion, and in
d=2 it reproduces the exact central charge of the 2d Ising
model, c=1/2 (corresponding to F =m/12).

The Pade approximants can be greatly improved if we impose
the constraint that c=1/2 for d=2.

Using this method, we get the estimate (Fei, Giombi, IK, Tarnopolsky,
in progress)
F3dIsing

3 ~ 0.97

The value of F (and hence of the disk entanglement entropy) for
3d Ising seems to be extremely close to the free field value!

A similar result was found for C.in the conformal bootstrap
approach ¢ 518 /¢3d free scalar () 9466

El-Showk et al



Flsiug/Fsc
1o

Pade approximant with d=2 b.c.

e—expansion to 0(e)

Otf{; I I I I z.IS I I I I 3.I{J I I I I 3?5 I I I I 470 d
F, = 12[,_] +0.0205991€ + 0.0136429¢ + 0.00690843¢® + 0.00305846¢* + O(€”)

~

Fo+Fyy = 0.0174533+0.0205991¢ +0.0136429¢2+0.006706426* +0.00264884€¢* +O ()



Conclusion

The universal term in the disk EE in 2+1 CFT is determined by
the 3-sphere free energy F.

It satisfies the F-theorem, and we reviewed its tests using
conformal perturbation theory, free fields and Wilson-Fisher
O(N) models.

We tried to generalize the F-theorem to other
dimensionalities.

The 5d critical O(N) models can be used to provide a new test
of the d=5 F-theorem.

We found a new description of the UV fixed points of O(N)
model in 4<d<6 as IR fixed points of a cubic theory with N+1
fields. For N>N_;, , the IR fixed points are unitary and well-
defined to all orders in 1/N.



We studied dimensional continuation of the sphere free
energy and provided evidence for a generalized F-theorem in
continuous d, interpolating between F-theorems in odd and a-
theorems in even d.

The e—expansion of

e

F =sin(nd/2)log Zga = —sin(nwd/2)F

can be used to estimate the values of F for interesting 3d CFTs.

For the critical Ising model it is only a few per cent lower than
for the free conformal scalar.

Can this result be compared with a numerical calculation of
the EE for the Ising model?

The disk geometry is needed, but a half-cylinder may be tried
first as a warm-up. We expect the universal term to be close to
that for a free massless scalar.



