Aspects of holographic quenches

Part 1: Collapse and revival

J. Abajo-Arrastia, E. da Silva, E.L., J. Mas, A. Serantes, JHEP05(2014)126 E. da Silva, E.L., J. Mas, A. Serantes, JHEP04(2015)038

Motivation

out of equilibrium dynamics of isolated quantum systems

on general grounds: expected a fast approach to a stationary state

at the macroscopic level it appears as thermal equilibrium

not always the case: integrable systems, pre-thermalization plateaux

revivals of the initial state in finite size setups

ex: RCFTs on a circle (Cardy, 2014)

can holography be a useful tool in these situations?

Holographic quenches

quantum quench: H₀(t<0), H(t>0)

holographic quench

t<0,
$$|\Psi_{gs}\rangle_{CFT}$$

t=0, $\epsilon>0$ (ex: switch on-off a coupling)

t>0,
$$|\Psi(t)\rangle_{CFT}$$

shell mass=quench energy

Finite size systems

BH always forms

richer phenomenology, depending on M·R

Spherical collapse

asymptotically flat spacetime:

sufficiently massive shell will form a BH

(Choptuik, 1993)

below a certain mass threshold, no horizon forms

asympotically AdS:

reflecting boundary

shell mass * boundary size

>1/G

horizon forms at first infall

always in AdS Minkowski

<1/G

requires bounces

generically black hole forms after enough bounces

What's the FT meaning?

(Bizon, Rostworowski, 2011)

Field theory revivals

simple propagation model

<u>compact space</u>: **excitations flying apart reunite again**

propagation time: $t_0 = \frac{L}{2v}$

$$t_0 = \frac{L}{2v}$$

$$|\Psi(t+\pi)\rangle = |\Psi(t)\rangle$$

Field theory revivals

Holographic setup

spherical sym massless scalar collapse shell thickness ≈ timespan of the quench

thin shell: sudden quench

horizon: irreversible dephasing of some dof

CFT3 quenches

(Abajo-Arrastia, da Silva, EL, Mas, Serantes 2014)

CFT3 on a 2-sphere (R=1)

AdS4: allows BH of any mass + thin shells always collapse

(Bizon, Rostworowski, 2011)

 $\mathcal{M} = 2GM \approx \text{energy density per species}$

revival time increases with M

CFT2 quenches

(da Silva, EL, Mas, Serantes 2014)

CFT2 on a circle (R=1)

AdS3: BH only for $\mathcal{M} > 1$

 \mathcal{M} <1 only compatible with naked singularities, do not form through collapse

revivals for larger 1M than in AdS4

 t_r tends to π for small $\mathcal M$

very long periods close to $\mathcal{M}=1$

Interpretation

large quench energy — fast evolution towards equilibration, no revivals

AdS4:

revivals well described by free prop. of excitations

 $\left(\mathcal{M}\uparrow,\ t_r>\pi\right)$

free propagation fails, fast equilibration sets in

AdS3: strong symmetry constrains

revivals for larger ${\mathfrak M}$ and $t_r\gg \pi$

 t_r grows with M: interaction effect

Interpretation

two timescales emerge when $\mathcal{M} \simeq 1$

[0,t_c]: free streaming

t=t_c: dephasing

t=t_r-t_c: rephasing

 $[t_r-t_c,t_r+t_c]$: free streaming

gravity counterpart

Interpretation

EE evolution suggests a series of collapse & revivals

condensate of atoms on a trap

average phase coherence of the condensate

2-level atom coupled to radiation

probability of the atom excited state minus that of the ground state

system starts in a coherent state with average number n

$$\frac{t_r}{t_c} = 2\sqrt{n}$$

Conclusions

holography is a useful tool for out of equilibrium non ergodic situations

holographic predictions:

revival period generically increases with quench energy finite # of revivals, stepwise thermalization

holographic dictionary in time-dependent situations

gravitational dynamics leading or not to horizon formation

dephasing/rephasing dynamics in out of equilibrium QFT

unitary evolution