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The General Problem
• Consider a quantum many-body system with a 

chaotic Hamiltonian. 

• We start out the system in some initial state that is a 
simple product state. This state has a high energy, 
and is far from equilibrium. 

• Goal: Compute a few-body observable          at a 
later time. 

• Extremely hard problem.
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1D Spin Chains

N spin-1/2’s arranged in a line 

Large Hilbert Space 

Chaotic local Hamiltonian

H = (C2)⌦N
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The Challenge

• Start with a product state, which is a high energy 
state, and very far from equilibrium: 

• Challenge: Compute                            
⌦
 (t)

��XN/2

�� (t)
↵
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The Challenge

hZN/2(t)i
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Ising Model
(Banuls, Hastings, Verstraete, Cirac)

hXi



Matrix Product States

Definition: The state       is said to be a Matrix 
Product State (MPS) if there exist matrices            
such that

� 2 {0, 1} i 2 {1, . . . , N}

| i =
X

�1,...�n

c(�1, . . . ,�N )|�1 . . .�N i

| i
A(i,�)

c(�1, . . . ,�N ) = Tr
h
A(1,�1) . . . A(N,�N )

i
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MPS Examples

• Ex1: All spins pointing in the Z direction  

• Ex2: All spins pointing in the X direction 

• Ex3: GHZ state 

• Bond dimension 

�3�2�1 �4 �5 �6

|0 . . . 0i

(|0i+ |1i)⌦N

|0 . . . 0i+ |1 . . . 1i
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Matrix Product States
• Theorem: All states in     are Matrix Product States   

• A generic state will require extremely large 
matrices to capture the entire state: 

• But on a computer, bdmax = 512 (say) 

• Theorem: Ground states of gapped local 
Hamiltonians in 1D can be written accurately as 
MPS of bond dimension of order 

H

O(N0)

log bd � SEE
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Time Evolution with MPS
Apply Trotter-Suzuki decomposition on  

C(1) =

✓
0

p
cosh ✏ sinh ✏p

cosh ✏ sinh ✏ 0

◆
C(0) =

✓
cosh ✏ 0

0 sinh ✏

◆

exp

�
✏(Z1Z2 + Z2Z3 + . . . ZNZ1)

�
=

X

k1...kN

Tr
�
C(k1) . . . C(kN )

�
⇥ Zk1

1 . . . ZkN
N

exp(✏ZiZi+1) = cosh ✏+ sinh ✏ZiZi+1

exp(�iHdt)
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Contract this network to get 

Time Evolution with MPS
hXN/2(t)i



Time Evolution with MPS
Problem: Bond dimension doubles after each dt 

       = 

Start with bd=1, reach bdmax=512 in 9 dt’s 

Need to truncate the matrices!

bd
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2bd
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How to truncate?
• Truncation methods form the heart of MPS based 

algorithms 

• One method is to keep the largest singular values across 
every cut (iTEBD). Yields excellent results for Euclidean 
evolution 

• No matter how clever we are in truncating, the real-time 
case will break down eventually since  

• Modest Goal: Can we find a better contraction and/or 
truncation scheme that will allow us to go on for a 
longer time?

SEE = vt
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Linear EE growth

Imagine contracting sideways. State on the vertical slice will 
become a product state if we fold the network along the 
horizontal middle line (Banuls, Hastings, Verstraete, Cirac)

13



The folded network

Move right until you reach a fixed point
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Results from Folding
Ising Model (compare to known exact results) 

(Banuls, Hastings, Verstraete, Cirac)



Food for Thought

What does entanglement in time mean?  

Can we characterize it in various general settings?



How to truncate?
Let’s say you want to find out 
how to truncate the bonds 
cutting across the red line
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How to truncate?
=: ⇤

top

= UDU†

U †

D�1/2

D1/2

U

U
D�1/2

D1/2

U †

N
ew

 A

Guarantees ⇤
top

= 1

Blue indicates dagger

Absorb these into 
the tensor below
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How to truncate?

=: ⇤
bottom

= ⇢

Truncate to the largest bdmax eigenvalues of 
“Normal method” 

⇢
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A New “Hybrid” Method
• Do the        step exactly as before 

• For             , instead of using the dagger, use the 
transpose 

• Truncate to the bdmax largest singular values

⇤
top

⇤
bottom

=: ⇤
bottom

= USV †
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A New “Hybrid” Method
• The intuition is that in the normal top-to-bottom 

contraction of the network, the state on the right 
evolves with the same Hamiltonian as that on the 
left 

• If we put the dagger on the right, the evolution 
upwards of             is described by a non-Hermitian 
Hamiltonian (if we take a continuum limit) 

• Originally, we were working with continuous-in-time 
MPS, which led to this intuition 

⇤
bottom
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Results
|X+i state. t = 10.6. Errors compared to bdmax=240
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Conclusions

• We did better than previously 

• Different initial states can behave very differently (at 
least for the observed period of time). Qualitatively 
different approaches to thermal behavior?

27



1-point functions
at times of order 1

N-point functions
at times of order  N3/2



Coda

Explorers are we, intrepid and bold, 
Out in the wild, amongst wonders untold.


