MPS of unitary and non-unitary fractional quantum Hall wavefunctions

N. Regnault

Ecole Normale Supérieure Paris and CNRS, Department of Physics, Princeton Global Scholar

- Y.-L. Wu (University of Maryland)
- B. Estienne (Universite Pierre et Marie Curie, Paris)
- Z. Papic (University of Leeds)
- A.B. Bernevig (Princeton University)

- FQH states and entanglement spectrum
- MPS for the FQH model states
- FQHE and topological entanglement entropy
- FQHE and non-unitary CFTs
- Probing the excitations

FQH states and entanglement spectrum

Fractional Quantum Hall effect

Landau levels (spinless case)

- Cyclotron frequency : $\omega_c = \frac{eB}{m}$,
- Filling factor : $\nu = \frac{hn}{eB} = \frac{N}{N_{\Phi}}$
- Partial filling + interaction \rightarrow FQHE
- Lowest Landau level (u < 1) : $z^m \exp\left(-|z|^2/(4l_B^2)\right)$
- N-body wave function : $\Psi = P(z_1, ..., z_N) \exp(-\sum |z_i|^2 / (4l_B^2))$
- What are the low energy properties? Gapped bulk, Massless edge
- Strongly correlated systems, emergence of exotic phases :fractional charges, non-abelian braiding.

What can we do? Numerical simulations, effective field theories, trial wavefunctions

A (very) good approximation of the ground state at $\nu = \frac{1}{3}$

$$\Psi_L(z_1,...z_N) = \prod_{i< j} (z_i - z_j)^3 e^{-\sum_i \frac{|z_i|^2}{4J^2}}$$

Excitations with fractional charge $\frac{+e}{3}$ and fractional statistics

Edge excitations

- A chiral U(1) boson with a dispersion relation $E \simeq \frac{2\pi v}{L} n$
- The degeneracy of each energy level is given by the sequence 1, 1, 2, 3,

Entanglement entropy and entanglement spectrum

- Start from a quantum state |Ψ⟩, create a bipartition of the system into A and B
- Reduced density matrix $ho_A = \operatorname{Tr}_B \ket{\Psi} ra{\Psi}$
- Entanglement entropy $S_A = -\text{Tr}_A \left[\rho_A \ln \rho_A \right]$

- For 2D topological phases : area law + topological constant correction (Levin/Wen, Kitaev/Preskill 06) : $S_A \sim \alpha \mathcal{L} \gamma$, \mathcal{L} length of the boundary between A and B, γ only depends on the nature of the excitations.
- Schmidt decomposition $|\Psi\rangle = \sum_{i} e^{-\xi_i/2} |A:i\rangle \otimes |B:i\rangle$ with $\langle A:i|A:j\rangle = \langle B:i|B:j\rangle = \delta_{i,j}$

•
$$\rho_A = \sum_i e^{-\xi_i} |A:i\rangle \langle A:i|$$

- Li and Haldane (2008)
 - Look at the spectrum of ρ_A i.e. $\{\xi_i\}$ entanglement energies
 - Focus on specific blocks of ρ_A defined by their quantum numbers

Orbital entanglement spectrum

- FQHE on a cylinder (Landau gauge) : orbitals are labeled by k_y , rings at position $\frac{2\pi k_y}{L} l_B^2$
- Divide your orbitals into two groups A and B, keeping N_{orb,A} orbitals : orbital cut ≃ real space cut (fuzzy cut)

- Fingerprint of the edge mode (edge mode counting) can be read from the ES. ES mimics the chiral edge mode spectrum.
- For FQH model states, nbr. levels is exp. lower than expected.

MPS for the FQH model states

Model states and CFT

• A large set of model wavefunctions can be written as a CFT correlator (Laughlin, Moore-Read, Read-Rezayi,...).

$$\Psi(z_1,\cdots,z_N) = \langle V(z_1)\cdots V(z_N) \rangle$$

with electron operator V(z) in some chiral 1+1 CFT .

- Bulk-edge correspondence : The CFT used to describe the (gapped) bulk is identical to the CFT that describes the (gapless) edge
- Laughlin state :
 - $V(z) =: \exp(i\sqrt{m}\Phi(z))$:, where $\Phi(z)$ is a free chiral boson
 - $\langle \Phi(z_1)\Phi(z_2)\rangle = -\log(z_1-z_2)$
 - $\langle V(z_1)\cdots V(z_N)\rangle = \prod_{i< j} (z_i-z_j)^m$
- Other states : $V(z) =: \Psi(z) \otimes \exp(i\sqrt{q}\Phi(z))$: (i.e. neutral $\otimes U(1)$ charge) (Moore-Read 91)

Matrix Product States

Any state can be written as

$$|\Psi\rangle = \sum_{\{m_i\}} \left(B^{[m_1]} ... B^{[m_{N_{\rm orb}}]} \right)_{\alpha_I, \alpha_r} |m_1, ..., m_{N_{\rm orb}}\rangle$$

where the $\{B^{[m]}\}\$ is a set of matrices plus boundary conditions (here (α_l, α_r)).

The $B_{\alpha,\beta}^{[m]}$ matrices have two types of indices

- [m] is the physical index (for FQH, occupied or empty orbital)
- (α, β) are the bond indices (auxiliary space), ranging from $1, ..., \chi$.
- *χ* is related to the rank of the ES : the number of non-zero eigenvalues in the ES gives a lower bound to *χ*.
- In general χ is of the order of exp S_A (S_A is the entanglement entropy) → for 2d topological phases, it grows exponentially with the perimeter of the cut (area law). An exponential improvement over the exp(surface) of ED...

Rewriting model states as MPS (Zaletel and Mong 2012)

 Insert a complete basis of states (continuous MPS - Dubail and Read (2012))

$$\sum_{\alpha_1,\cdots,\alpha_{N-1}} \langle 0|V(z_1)|\alpha_1\rangle \langle \alpha_1|V(z_2)|\alpha_2\rangle \cdots \langle \alpha_{N-1}|V(z_N)|0\rangle$$

 $\langle \alpha | V(z) | \beta \rangle$ is a matrix with a continuous physical index (z). • Project to $| m_1, \dots, m_{N_{\text{orb}}} \rangle$

One gets an infinite MPS on any genus 0 geometry

$$c_{(m_1,\cdots,m_{N_{\rm orb}})} = \left(B^{[m_1]}[1]\cdots B^{[m_{N_{\rm orb}}]}[N_{\rm orb}]\right)_{\alpha_L,\alpha_R}$$

 $\langle \alpha' | \mathcal{B}^{[0]}[j] | \alpha \rangle = \delta_{\alpha',\alpha} \text{ and } \langle \alpha' | \mathcal{B}^{[1]}[j] | \alpha \rangle = \delta_{\Delta_{\alpha'},\Delta_{\alpha} + h + j} \langle \alpha' | \mathcal{V}(1) | \alpha \rangle$

The previous formulation leads to B matrices that depend on the orbital. Can we make them site independent?

Zaletel and Mong (2012) : if we can make the background charge uniform, then we obtain a site independent MPS

The CFT factorizes as $\mathcal{H} = \mathcal{H}_{neutral} \otimes \mathcal{H}_{U(1)}$, the product of a neutral CFT and a U(1) chiral free boson. What is needed for a numerical implementation?

- $\bullet\,$ To build the basis $|\alpha\rangle$ (i.e. the auxiliary space) and to have truncation scheme
- To compute the matrix elements $\langle \alpha' | B^{[m]} | \alpha \rangle$

Constructing the auxiliary CFT basis

We focus on the Laughlin state

- Electron operator $V(z) =: \exp(i\sqrt{m}\Phi(z)) :.$
- $\Phi(z) = \Phi_0 + ia_0 \log(z) + i \sum_{n \neq 0} \frac{1}{n} a_n z^n$. • $|Q, \mu\rangle = \prod_{i=1}^n a_{-\mu_i} |Q\rangle, |Q\rangle$ vacuum with charge Q. • $|\mu| = 0, 1$ state $|Q\rangle, \mu = \emptyset$. • $|\mu| = 1, 1$ state $a_{-1} |Q\rangle, \mu = \{1\}$. • $|\mu| = 2, 2$ states $a_{-1}^2 |Q\rangle, \mu = \{1, 1\}$ and $a_{-2} |Q\rangle, \mu = \{2\}$. • ...
- It is an infinite basis. \rightarrow a truncation scheme is needed
- Analytical formula for the matrix elements $\langle Q, \mu | V(1) | Q', \mu' \rangle$ Beyond the Laughlin state, $|\Delta, \lambda \rangle \otimes |Q, \mu \rangle$, where $|\Delta, \lambda \rangle$ are the descendants of the primary field $|\Delta \rangle$ (non orthogonal, overcomplete basis).

Truncation of the auxiliary CFT basis

- The natural cut-off is the total level $P = |\lambda| + |\mu| \le P_{\max}$ (cut-off at a given CFT level at Q = 0)
- Truncation over the momentum in the OES.
- In finite size, the truncated MPS becomes exact for $P_{\rm max}$ large enough.

- DMRG : cut-off in ξ (remove the smallest weight of ρ_A).
- MPS : cut-off in momentum.

Equivalent if the ES mimics the chiral edge mode spectrum.

Benchmarking the MPS for the FQHE

FQHE and topological entanglement entropy

<u>Abelian states</u> : one electronic wavefunction once the excitations are fixed <u>Non-abelian states</u> : Nbr of wfs depends on the number of excitations N_{exc}

Quantum dimension d_a : for each topological sector *a* (i.e. type of excitations), the internal Hilbert space grows like $d_a^{N_{\sigma}}$.

Topological entanglement entropy

- 2d topological phase ightarrow area law : $\mathcal{S}_{\mathcal{A}} \sim lpha \mathcal{L} \gamma$
- Topological term $\gamma = \ln \left(\frac{\mathcal{D}}{d_a} \right)$
- Total quantum dimension $\mathcal{D} = \sqrt{\sum_a d_a^2}$, $d_a = 1$ for an abelian sector.
- For an abelian state at filling $\nu = \frac{p}{q}$, q abelian sectors.
- Moore-Read : 4 sectors with d = 1 and 2 sectors with $d = \sqrt{2}$

A highly non-trivial example : the \mathbb{Z}_3 Read-Rezayi state

- We can extract the quantum dimensions of all topological sectors.
- Good agreement despite using the orbital partition (versus real space cut)

FQHE and non-unitary CFTs

Composite fermions

Jain's model (1989) :

Map FQHE into an integer quantum Hall effect for these composite fermions.

$$u^* = N/N_{\phi}^* = p \longrightarrow \nu = rac{p}{2p+1}$$

Example : two filled effective Landau levels :

The $\nu = 2/5$ Jain's state is an abelian state with 5 topological sectors. No simple CFT expression (see Hermanns et al.)

• Non-unitary CFTs have at least one primary field with a negative conformal dimension. Some correlation function for the edge may diverge

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = |x-y|^{-2h_{\mathcal{O}}}$$

- But looking at finite size numerics, the bulk wavefunction seems OK .
- Hard to tell numerically if the bulk is gapless.
- Example : Gaffnian state at $\nu = 2/5$, non-abelian excitations (like the Moore-Read state), built from the M(3,5) minimal model, quasihole field $h_{\sigma} = -1/20$. High overlap with the $\nu = 2/5$ Jain's state.
- Can the MPS probe the pathology of this state?

Topological entanglement entropy

What about the Gaffnian state? ED/Jack $L \simeq 17 I_B$

(CFT prediction \simeq 1.44768)

(CFT prediction $\simeq 0.96647$)

- γ barely depends on the topological sector i.e. $d_a = 1$.
- For an abelian state at $\nu = \frac{2}{5}$, $\gamma = \ln \left(\sqrt{5}\right) \simeq 0.805$.
- We only capture the abelian excitations.
- Is there something wrong about our calculation?

iMPS - Transfer matrix

Transfer matrix : $E = \sum_{m} B^{[m]*} \otimes B^{[m]}$.

- How to compute the normalization of an MPS state? $\langle \Psi | \Psi \rangle = (E^{N_{\text{orb}}})_{(\alpha,\alpha),(\beta,\beta)}.$
- For a large number of orbitals, only the eigenstate with the largest eigenvalue will matter.
- The transfer matrix allows to do several calculations in a simple and elegant manner for an infinitely long system (iMPS) including the entanglement entropy.
- We can extract the correlation length from the ratio between the two largest eigenvalues λ_1 and λ_2 :

$$\langle \mathcal{O}^{\dagger}(x)\mathcal{O}(0)
angle - \langle \mathcal{O}^{\dagger}(x)
angle \langle \mathcal{O}(0)
angle \propto \exp\left(-rac{|x|}{\zeta}
ight)$$

with
$$\zeta^{-1} = rac{L}{2\pi l_B^2} \ln(rac{\lambda_1}{\lambda_2})$$

Correlation length ζ

The Gaffnian has a critical behavior in the qh sector of the bulk, (where qh operator has a negative scaling dimension). The MR state has the same corr. length in both sectors $\zeta \simeq 2.7 I_B$.

Probing the excitations

Quasihole Sizes for $\mathbb{Z}_{k\leq 3}$ Read-Rezayi

10 density profile for \mathbb{Z}_3 5Read-Rezavi guasiholes $+: \frac{e}{5}, x: \frac{2e}{5}, *: \frac{3e}{5}$ y/ℓ_0 0 $\frac{\nu}{2}$ isotropic -5• fusion-channel indep. -10-15 - 10-5 $\mathbf{5}$ 10 150 when well separated $\rho/(2\pi\ell_0^2)^{-1}$ x/ℓ_0 (a) (b) ℤ₃ Read-Rezay '4.03/5 $ho/(2\pi\ell_0^2)^{-1}$ 1/2 R/ℓ_0 3.5quasihole radius Moore-Read 1/33.0comparable between Laughlin 1/3 $L_y = 20\ell_0$ different k ($\simeq 3I_B$) 2.528 10220 1618 20 r/ℓ_0 L_u / ℓ_0

First numerical estimate for Read-Rezayi quasihole radius. $l_B \sim 10 \text{ nm} \Rightarrow R \sim 30 \text{ nm}; \text{ interferometer qh separation} \sim 100 \text{ nm}$

Braiding

conformal block basis

$$\mathsf{MR} : |\Psi_a\rangle = \underbrace{\sigma}_{a} \underbrace{\sigma}_{\sigma} \underbrace{\sigma}_{1}^{\sigma}, \quad a = 1, \psi.$$
$$\mathsf{RR} : |\Psi_a\rangle = \underbrace{\sigma}_{a} \underbrace{\sigma}_{\varepsilon} \underbrace{\sigma}_{\psi_2}^{\sigma}, \quad a = \psi_1, \sigma_2.$$

compute Wilson loop by integrating non-Abelian Berry connection

$$\mathcal{A}_{ab}(\eta; \mathrm{d}\eta) \equiv e^{-i\mathrm{d}\eta A_{ab}(\eta)} \equiv \frac{\langle \Psi_a(\eta + \mathrm{d}\eta) | \Psi_b(\eta) \rangle}{\|\Psi_a(\eta + \mathrm{d}\eta)\| \cdot \|\Psi_b(\eta)\|},$$

Branch cuts and test of the screening

- \bullet Usual assumptions : Link between 2 + 1 TQFT and 1 + 1 CFT
 - degeneracy = number of conformal blocks
 - braiding = monodromies
- Branch cuts : monodromy, tested MR/RR (10^{-4})
- Non-singular part : the non-universal could spoil everything Controlled by overlap matrix $\langle \Psi_a | \Psi_b \rangle$ for fixed qh positions

Screening condition and Berry connection :

at large quasihole separation $|\Delta\eta|$, the overlap converges exponentially fast to a constant diagonal matrix,

$$\langle \Psi_{a}|\Psi_{b}
angle = \mathcal{C}_{a}\delta_{ab} + \mathcal{O}(e^{-|\Delta\eta|/\xi_{ab}})$$

then the Berry connection vanishes up to an exp. small correction $A_{ab}(\eta) \sim \mathcal{O}(e^{-|\Delta\eta|/\xi_{ab}})$ after subtracting Aharonov-Bohm phase.

- MPS can be constructed for a large class of FQH model states.
- Quantum dimensions can be extracted from the microscopic wavefunction (MR and RR).
- MPS allows to directly probe the pathology some model wave functions built from the non-unitary CFT.
- First numerical estimate of the RR quasihole size.
- Microscopic verification that the Z₃ Read-Rezayi quasiholes are Fibonacci anyons, without assuming screening.