MPS of unitary and non-unitary fractional quantum Hall wavefunctions

N. Regnault

Ecole Normale Supérieure Paris and CNRS, Department of Physics, Princeton Global Scholar

بpa
laboratoire pierre aigrain électronique et photonique quantiques

Acknowledgment

- Y.-L. Wu (University of Maryland)
- B. Estienne (Universite Pierre et Marie Curie, Paris)
- Z. Papic (University of Leeds)
- A.B. Bernevig (Princeton University)

Outline

- FQH states and entanglement spectrum
- MPS for the FQH model states
- FQHE and topological entanglement entropy
- FQHE and non-unitary CFTs
- Probing the excitations

FQH states and entanglement spectrum

Fractional Quantum Hall effect

Landau levels (spinless case)

- Cyclotron frequency: $\omega_{c}=\frac{e B}{m}$,
- Filling factor : $\nu=\frac{h n}{e B}=\frac{N}{N_{\phi}}$
- Partial filling + interaction \rightarrow FQHE
- Lowest Landau level $(\nu<1)$: $z^{m} \exp \left(-|z|^{2} /\left(\left.4\right|_{B} ^{2}\right)\right)$
- N-body wave function :

$$
\Psi=P\left(z_{1}, \ldots, z_{N}\right) \exp \left(-\sum\left|z_{i}\right|^{2} /\left(\left.4\right|_{B} ^{2}\right)\right)
$$

- What are the low energy properties? Gapped bulk, Massless edge
- Strongly correlated systems, emergence of exotic phases :fractional charges, non-abelian braiding.
What can we do? Numerical simulations, effective field theories, trial wavefunctions

The Laughlin wave function

A (very) good approximation of the ground state at $\nu=\frac{1}{3}$

$$
\Psi_{L}\left(z_{1}, \ldots z_{N}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{3} e^{-\sum_{i} \frac{\left|z_{i}\right|^{2}}{\left.4\right|^{2}}}
$$

Excitations with fractional charge $\frac{+e}{3}$ and fractional statistics

Edge excitations

- A chiral $U(1)$ boson with a dispersion relation $E \simeq \frac{2 \pi v}{L} n$
- The degeneracy of each energy level is given by the sequence
 $1,1,2,3, \ldots$.

Entanglement entropy and entanglement spectrum

- Start from a quantum state $|\Psi\rangle$, create a bipartition of the system into A and B
- Reduced density matrix $\rho_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|$
- Entanglement entropy $\mathcal{S}_{A}=-\operatorname{Tr}_{A}\left[\rho_{A} \ln \rho_{A}\right]$

1D:

2D:

- For 2D topological phases : area law + topological constant correction (Levin/Wen, Kitaev/Preskill 06) : $\mathcal{S}_{A} \sim \alpha \mathcal{L}-\gamma, \mathcal{L}$ length of the boundary between A and B, γ only depends on the nature of the excitations.
- Schmidt decomposition $|\Psi\rangle=\sum_{i} e^{-\xi_{i} / 2}|A: i\rangle \otimes|B: i\rangle$ with $\langle A: i \mid A: j\rangle=\langle B: i \mid B: j\rangle=\delta_{i, j}$
- $\rho_{A}=\sum_{i} e^{-\xi_{i}}|A: i\rangle\langle A: i|$
- Li and Haldane (2008)
- Look at the spectrum of ρ_{A} i.e. $\left\{\xi_{i}\right\}$ entanglement energies
- Focus on specific blocks of ρ_{A} defined by their quantum numbers

Orbital entanglement spectrum

- FQHE on a cylinder (Landau gauge) : orbitals are labeled by k_{y}, rings at position $\frac{2 \pi k_{y}}{L} I_{B}^{2}$
- Divide your orbitals into two groups A and B, keeping $N_{\text {orb, } A}$ orbitals: orbital cut \simeq real space cut (fuzzy cut)

Laughlin state $N=12$, half cut
OES Laughlin $\mathrm{N}=12, \mathrm{~N}_{\mathrm{A}}=6$ on a cylinder $\mathrm{L}=15$

- Fingerprint of the edge mode (edge mode counting) can be read from the ES. ES mimics the chiral edge mode spectrum.
- For FQH model states, nbr. levels is exp. lower than expected.

Model states and CFT

- A large set of model wavefunctions can be written as a CFT correlator (Laughlin, Moore-Read, Read-Rezayi,...).

$$
\Psi\left(z_{1}, \cdots, z_{N}\right)=\left\langle V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right\rangle
$$

with electron operator $V(z)$ in some chiral $1+1$ CFT .

- Bulk-edge correspondence : The CFT used to describe the (gapped) bulk is identical to the CFT that describes the (gapless) edge
- Laughlin state :
- $V(z)=: \exp (i \sqrt{m} \Phi(z))$:, where $\Phi(z)$ is a free chiral boson
- $\left\langle\Phi\left(z_{1}\right) \Phi\left(z_{2}\right)\right\rangle=-\log \left(z_{1}-z_{2}\right)$
- $\left\langle V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right\rangle=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m}$
- Other states : $V(z)=: \Psi(z) \otimes \exp (i \sqrt{q} \Phi(z))$: (i.e. neutral $\otimes U(1)$ charge) (Moore-Read 91)

Matrix Product States

Any state can be written as

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}}\left(B^{\left[m_{1}\right]} \ldots B^{\left[m_{N_{\text {orb }}}\right]}\right)_{\alpha_{l}, \alpha_{r}}\left|m_{1}, \ldots, m_{N_{\text {orb }}}\right\rangle
$$

where the $\left\{B^{[m]}\right\}$ is a set of matrices plus boundary conditions (here $\left(\alpha_{l}, \alpha_{r}\right)$).

The $B_{\alpha, \beta}^{[m]}$ matrices have two types of indices

- [m] is the physical index (for FQH, occupied or empty orbital)
- (α, β) are the bond indices (auxiliary space), ranging from $1, \ldots, \chi$.
- χ is related to the rank of the ES : the number of non-zero eigenvalues in the ES gives a lower bound to χ.
- In general χ is of the order of $\exp \mathcal{S}_{A}\left(\mathcal{S}_{A}\right.$ is the entanglement entropy) \rightarrow for $2 d$ topological phases, it grows exponentially with the perimeter of the cut (area law). An exponential improvement over the $\exp ($ surface) of ED...

Rewriting model states as MPS (Zaletel and Mong 2012)

- Insert a complete basis of states (continuous MPS - Dubail and Read (2012))

$$
\sum_{\alpha_{1}, \cdots, \alpha_{N-1}}\langle 0| V\left(z_{1}\right)\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| V\left(z_{2}\right)\left|\alpha_{2}\right\rangle \cdots\left\langle\alpha_{N-1}\right| V\left(z_{N}\right)|0\rangle
$$

$\langle\alpha| V(z)|\beta\rangle$ is a matrix with a continuous physical index (z).

- Project to $\left|m_{1}, \cdots, m_{N_{\text {orb }}}\right\rangle$

One gets an infinite MPS on any genus 0 geometry

$$
c_{\left(m_{1}, \cdots, m_{N_{\text {orb }}}\right)}=\left(B^{\left[m_{1}\right]}[1] \cdots B^{\left[m_{N_{\text {orb }}}\right]}\left[N_{\text {orb }}\right]\right)_{\alpha_{L}, \alpha_{R}}
$$

$$
\left\langle\alpha^{\prime}\right| B^{[0]}[j]|\alpha\rangle=\delta_{\alpha^{\prime}, \alpha} \text { and }\left\langle\alpha^{\prime}\right| B^{[1]}[j]|\alpha\rangle=\delta_{\Delta_{\alpha^{\prime}}, \Delta_{\alpha}+h+j}\left\langle\alpha^{\prime}\right| V(1)|\alpha\rangle
$$

Site independent MPS

The previous formulation leads to B matrices that depend on the orbital. Can we make them site independent?

Zaletel and Mong (2012) : if we can make the background charge uniform, then we obtain a site independent MPS

The CFT factorizes as $\mathcal{H}=\mathcal{H}_{\text {neutral }} \otimes \mathcal{H}_{U(1)}$, the product of a neutral CFT and a $U(1)$ chiral free boson.
What is needed for a numerical implementation?

- To build the basis $|\alpha\rangle$ (i.e. the auxiliary space) and to have truncation scheme
- To compute the matrix elements $\left\langle\alpha^{\prime}\right| B^{[m]}|\alpha\rangle$

Constructing the auxiliary CFT basis

We focus on the Laughlin state

- Electron operator $V(z)=: \exp (i \sqrt{m} \Phi(z))$:.
- $\Phi(z)=\Phi_{0}+i a_{0} \log (z)+i \sum_{n \neq 0} \frac{1}{n} a_{n} z^{n}$.
- $|Q, \mu\rangle=\prod_{i=1}^{n} a_{-\mu_{i}}|Q\rangle,|Q\rangle$ vacuum with charge Q.
- $|\mu|=0,1$ state $|Q\rangle, \mu=\emptyset$.
- $|\mu|=1,1$ state $a_{-1}|Q\rangle, \mu=\{1\}$.
- $|\mu|=2,2$ states $a_{-1}^{2}|Q\rangle, \mu=\{1,1\}$ and $a_{-2}|Q\rangle, \mu=\{2\}$.
- ...
- It is an infinite basis. \rightarrow a truncation scheme is needed
- Analytical formula for the matrix elements $\langle Q, \mu| V(1)\left|Q^{\prime}, \mu^{\prime}\right\rangle$

Beyond the Laughlin state, $|\Delta, \lambda\rangle \otimes|Q, \mu\rangle$, where $|\Delta, \lambda\rangle$ are the descendants of the primary field $|\Delta\rangle$ (non orthogonal, overcomplete basis).

Truncation of the auxiliary CFT basis

- The natural cut-off is the total level $P=|\lambda|+|\mu| \leq P_{\max }$ (cut-off at a given CFT level at $Q=0$)
- Truncation over the momentum in the OES.
- In finite size, the truncated MPS becomes exact for $P_{\max }$ large enough.
- DMRG : cut-off in ξ (remove the smallest weight of ρ_{A}).
- MPS : cut-off in momentum. Equivalent if the ES mimics the chiral edge mode spectrum.

Benchmarking the MPS for the FQHE

MPS is a highly accurate approximation on the cylinder with a moderate perimeter $\left(\simeq 20-30 I_{B}\right)$. A consequence of the area law.

FQHE and topological entanglement entropy

Quantum dimension

Abelian states : one electronic wavefunction once the excitations are fixed
Non-abelian states : Nbr of wfs depends on the number of excitations $N_{\text {exc }}$

Fusion rules for the MR state :
$\sigma \times \sigma=1+\Psi$,
$1 \times \sigma=\sigma$ and $\Psi \times \sigma=\sigma$
Nbr of fusion trees $=$ nbr of independent wfs
Here nbr of wfs $\simeq 2^{N_{\sigma} / 2}=\sqrt{2}^{N_{\sigma}}$.

Quantum dimension d_{a} : for each topological sector a (i.e. type of excitations), the internal Hilbert space grows like $d_{a}^{N_{\sigma}}$.

Topological entanglement entropy

- 2d topological phase \rightarrow area law $: \mathcal{S}_{A} \sim \alpha L-\gamma$
- Topological term $\gamma=\ln \left(\frac{\mathcal{D}}{d_{a}}\right)$
- Total quantum dimension $\mathcal{D}=\sqrt{\sum_{a} d_{a}^{2}}, d_{a}=1$ for an abelian sector.
- For an abelian state at filling $\nu=\frac{p}{q}, q$ abelian sectors.
- Moore-Read : 4 sectors with $d=1$ and 2 sectors with $d=\sqrt{2}$

(CFT prediction $\ln \sqrt{8} \simeq 1.040$)

(CFT prediction $\ln (\sqrt{8} / \sqrt{2}) \simeq 0.693$)

Topological entanglement entropy

A highly non-trivial example : the \mathbb{Z}_{3} Read-Rezayi state

- We can extract the quantum dimensions of all topological sectors.
- Good agreement despite using the orbital partition (versus real space cut)

FQHE and non-unitary CFTs

Composite fermions

Jain's model (1989) :

$$
O+\|^{\wedge}=\bigoplus_{1}^{A}
$$

Map FQHE into an integer quantum Hall effect for these composite fermions.

$$
\nu^{*}=N / N_{\phi}^{*}=p \quad \longrightarrow \quad \nu=\frac{p}{2 p+1}
$$

Example : two filled effective Landau levels:

The $\nu=2 / 5$ Jain's state is an abelian state with 5 topological sectors. No simple CFT expression (see Hermanns et al.)

Non-unitary CFTs and FQHE

- Non-unitary CFTs have at least one primary field with a negative conformal dimension. Some correlation function for the edge may diverge

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle=|x-y|^{-2 h_{\mathcal{O}}}
$$

- But looking at finite size numerics, the bulk wavefunction seems OK .
- Hard to tell numerically if the bulk is gapless.
- Example: Gaffnian state at $\nu=2 / 5$, non-abelian excitations (like the Moore-Read state), built from the $M(3,5)$ minimal model, quasihole field $h_{\sigma}=-1 / 20$. High overlap with the $\nu=2 / 5$ Jain's state.
- Can the MPS probe the pathology of this state?

Topological entanglement entropy

What about the Gaffnian state? ED/Jack $L \simeq 17 I_{B}$

(CFT prediction $\simeq 1.44768$)

(CFT prediction $\simeq 0.96647$)

- γ barely depends on the topological sector i.e. $d_{a}=1$.
- For an abelian state at $\nu=\frac{2}{5}, \gamma=\ln (\sqrt{5}) \simeq 0.805$.
- We only capture the abelian excitations.
- Is there something wrong about our calculation?

iMPS - Transfer matrix

Transfer matrix : $E=\sum_{m} B^{[m] *} \otimes B^{[m]}$.

- How to compute the normalization of an MPS state?
$\langle\Psi \mid \Psi\rangle=\left(E^{N_{\text {orb }}}\right)_{(\alpha, \alpha),(\beta, \beta)}$.
- For a large number of orbitals, only the eigenstate with the largest eigenvalue will matter.
- The transfer matrix allows to do several calculations in a simple and elegant manner for an infinitely long system (iMPS) including the entanglement entropy.
- We can extract the correlation length from the ratio between the two largest eigenvalues λ_{1} and λ_{2} :

$$
\left\langle\mathcal{O}^{\dagger}(x) \mathcal{O}(0)\right\rangle-\left\langle\mathcal{O}^{\dagger}(x)\right\rangle\langle\mathcal{O}(0)\rangle \propto \exp \left(-\frac{|x|}{\zeta}\right)
$$

with $\zeta^{-1}=\frac{L}{2 \pi l_{B}^{2}} \ln \left(\frac{\lambda_{1}}{\lambda_{2}}\right)$

Correlation length ζ

The Gaffnian has a critical behavior in the qh sector of the bulk, (where qh operator has a negative scaling dimension). The MR state has the same corr. length in both sectors $\zeta \simeq 2.7 I_{B}$.

Probing the excitations

Quasihole Sizes for $\mathbb{Z}_{k \leq 3}$ Read-Rezayi

density profile for \mathbb{Z}_{3} Read-Rezayi quasiholes $+: \frac{e}{5}, x: \frac{2 e}{5}, *: \frac{3 e}{5}$

- isotropic
- fusion-channel indep. when well separated

quasihole radius comparable between different $k\left(\simeq 3 I_{B}\right)$

First numerical estimate for Read-Rezayi quasihole radius. $I_{B} \sim 10 \mathrm{~nm} \Rightarrow R \sim 30 \mathrm{~nm}$; interferometer qh separation $\sim 100 \mathrm{~nm}$

Braiding

conformal block basis
$\mathrm{MR}:\left|\Psi_{a}\right\rangle={\underset{a}{\sigma}{\underset{\sigma}{\sigma}}_{\sigma}^{\sigma}{ }_{\mathbb{1}}^{\sigma}}_{\underbrace{\sigma}}, \quad a=1, \psi$.

compute Wilson loop by integrating non-Abelian Berry connection

$$
\mathcal{A}_{a b}(\eta ; \mathrm{d} \eta) \equiv e^{-i \mathrm{~d} \eta A_{a b}(\eta)} \equiv \frac{\left\langle\Psi_{a}(\eta+\mathrm{d} \eta) \mid \Psi_{b}(\eta)\right\rangle}{\left\|\Psi_{a}(\eta+\mathrm{d} \eta)\right\| \cdot\left\|\Psi_{b}(\eta)\right\|}
$$

Branch cuts and test of the screening

- Usual assumptions: Link between $2+1$ TQFT and $1+1$ CFT
- degeneracy $=$ number of conformal blocks
- braiding = monodromies
- Branch cuts : monodromy, tested MR/RR (10^{-4})
- Non-singular part : the non-universal could spoil everything Controlled by overlap matrix $\left\langle\Psi_{a} \mid \Psi_{b}\right\rangle$ for fixed qh positions

Screening condition and Berry connection :

at large quasihole separation $|\Delta \eta|$, the overlap converges exponentially fast to a constant diagonal matrix,

$$
\left\langle\Psi_{a} \mid \Psi_{b}\right\rangle=C_{a} \delta_{a b}+\mathcal{O}\left(e^{-|\Delta \eta| / \xi_{a b}}\right)
$$

then the Berry connection vanishes up to an exp. small correction $A_{a b}(\eta) \sim \mathcal{O}\left(e^{-|\Delta \eta| / \xi_{a b}}\right)$ after
 subtracting Aharonov-Bohm phase.

Conclusion

- MPS can be constructed for a large class of FQH model states.
- Quantum dimensions can be extracted from the microscopic wavefunction (MR and RR).
- MPS allows to directly probe the pathology some model wave functions built from the non-unitary CFT.
- First numerical estimate of the RR quasihole size.
- Microscopic verification that the \mathbb{Z}_{3} Read-Rezayi quasiholes are Fibonacci anyons, without assuming screening.

