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FQH states and entanglement spectrum



Fractional Quantum Hall effect

Landau levels (spinless case)

hwc

hwcN=0

N=1

N=2

Rxx

Rxy
B

Cyclotron frequency : ωc = eB
m ,

Filling factor : ν = hn
eB = N

NΦ

Partial filling + interaction → FQHE

Lowest Landau level (ν < 1) :
zm exp

(
−|z |2/(4l2B)

)
N-body wave function :
Ψ = P(z1, ..., zN) exp(−∑ |zi |2/(4l2B))

What are the low energy properties ?
Gapped bulk, Massless edge

Strongly correlated systems,
emergence of exotic phases :fractional
charges, non-abelian braiding.

What can we do ? Numerical simulations, effective field theories,
trial wavefunctions



The Laughlin wave function

A (very) good approximation of the ground state at ν = 1
3

ΨL(z1, ...zN) =
∏
i<j

(zi − zj)
3e−

∑
i
|zi |2
4l2

Excitations with fractional charge +e
3 and fractional statistics

Edge excitations

A chiral U(1) boson with a
dispersion relation E ' 2πv

L n

The degeneracy of each energy
level is given by the sequence
1, 1, 2, 3, ....

(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2



Entanglement entropy and entanglement spectrum

Start from a quantum state |Ψ〉, create a
bipartition of the system into A and B

Reduced density matrix ρA = TrB |Ψ〉 〈Ψ|
Entanglement entropy SA = −TrA [ρA ln ρA]

A B
1D:

A B

2D:

L

For 2D topological phases : area law + topological constant
correction (Levin/Wen, Kitaev/Preskill 06) : SA ∼ αL − γ, L
length of the boundary between A and B, γ only depends on
the nature of the excitations.

Schmidt decomposition |Ψ〉 =
∑

i e
−ξi/2 |A : i〉 ⊗ |B : i〉 with

〈A : i |A : j〉 = 〈B : i |B : j〉 = δi ,j

ρA =
∑

i e
−ξi |A : i〉 〈A : i |

Li and Haldane (2008)
Look at the spectrum of ρA i.e. {ξi} entanglement energies
Focus on specific blocks of ρA defined by their quantum
numbers



Orbital entanglement spectrum

FQHE on a cylinder (Landau gauge) : orbitals are labeled by

ky , rings at position
2πky
L l2B

Divide your orbitals into two groups A and B, keeping Norb,A

orbitals : orbital cut ' real space cut (fuzzy cut)

K =01234567....y

A B

Ky

A

1 0 1
K  =y 0 1 2} 01

4 5}
B

01
6 73

1

Laughlin state N = 12, half cut

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

ξ

Ky

OES Laughlin N=12, NA=6 on a cylinder L=15
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Fingerprint of the edge mode (edge mode counting) can be
read from the ES. ES mimics the chiral edge mode spectrum.

For FQH model states, nbr. levels is exp. lower than expected.



MPS for the FQH model states



Model states and CFT

A large set of model wavefunctions can be written as a CFT
correlator (Laughlin, Moore-Read, Read-Rezayi,...).

Ψ(z1, · · · , zN) = 〈V (z1) · · ·V (zN)〉

with electron operator V (z) in some chiral 1 + 1 CFT .

Bulk-edge correspondence : The CFT used to describe the
(gapped) bulk is identical to the CFT that describes the
(gapless) edge

Laughlin state :

V (z) =: exp(i
√
mΦ(z)) :, where Φ(z) is a free chiral boson

〈Φ(z1)Φ(z2)〉 = − log (z1 − z2)
〈V (z1) · · ·V (zN)〉 =

∏
i<j(zi − zj)

m

Other states : V (z) =: Ψ(z)⊗ exp(i
√
qΦ(z)) : (i.e. neutral

⊗ U(1) charge) (Moore-Read 91)



Matrix Product States

Any state can be written as

|Ψ〉 =
∑
{mi}

(
B [m1]...B [mNorb

]
)
αl ,αr

|m1, ...,mNorb
〉

where the {B [m]} is a set of matrices plus boundary conditions
(here (αl , αr )).

The B
[m]
α,β matrices have two types of indices

[m] is the physical index (for FQH, occupied or empty orbital)

(α, β) are the bond indices (auxiliary space), ranging from
1, ..., χ.

χ is related to the rank of the ES : the number of non-zero
eigenvalues in the ES gives a lower bound to χ.

In general χ is of the order of expSA (SA is the entanglement
entropy) → for 2d topological phases, it grows exponentially
with the perimeter of the cut (area law). An exponential
improvement over the exp(surface) of ED...



Rewriting model states as MPS (Zaletel and Mong 2012)

Insert a complete basis of states (continuous MPS - Dubail
and Read (2012))∑

α1,··· ,αN−1

〈0|V (z1)|α1〉〈α1|V (z2)|α2〉 · · · 〈αN−1|V (zN)|0〉

〈α|V (z)|β〉 is a matrix with a continuous physical index (z).

Project to |m1, · · · ,mNorb
〉

One gets an infinite MPS on any genus 0 geometry

c(m1,··· ,mNorb
) =

(
B [m1][1] · · ·B [mNorb

][Norb]
)
αL,αR

〈α′|B [0][j ]|α〉 = δα′,α and 〈α′|B [1][j ]|α〉 = δ∆α′ ,∆α+h+j〈α′|V (1)|α〉



Site independent MPS

The previous formulation leads to B matrices that depend on the
orbital. Can we make them site independent ?

Zaletel and Mong (2012) : if we can make the background charge
uniform, then we obtain a site independent MPS

The CFT factorizes as H = Hneutral ⊗HU(1), the product of a
neutral CFT and a U(1) chiral free boson.
What is needed for a numerical implementation ?

To build the basis |α〉 (i.e. the auxiliary space) and to have
truncation scheme

To compute the matrix elements 〈α′|B [m]|α〉



Constructing the auxiliary CFT basis

We focus on the Laughlin state

Electron operator V (z) =: exp(i
√
mΦ(z)) :.

Φ(z) = Φ0 + ia0 log(z) + i
∑

n 6=0
1
nanz

n.

|Q, µ〉 =
∏n

i=1 a−µi |Q〉, |Q〉 vacuum with charge Q.

|µ| = 0, 1 state |Q〉, µ = ∅.
|µ| = 1, 1 state a−1 |Q〉, µ = {1}.
|µ| = 2, 2 states a2

−1 |Q〉, µ = {1, 1} and a−2 |Q〉, µ = {2}.
...

It is an infinite basis. → a truncation scheme is needed

Analytical formula for the matrix elements 〈Q, µ|V (1)|Q ′, µ′〉
Beyond the Laughlin state, |∆, λ〉 ⊗ |Q, µ〉, where |∆, λ〉 are the
descendants of the primary field |∆〉 (non orthogonal,
overcomplete basis).



Truncation of the auxiliary CFT basis

The natural cut-off is the total level P = |λ|+ |µ| ≤ Pmax

(cut-off at a given CFT level at Q = 0)

Truncation over the momentum in the OES.

In finite size, the truncated MPS becomes exact for Pmax

large enough.

DMRG : cut-off in ξ (remove
the smallest weight of ρA).

MPS : cut-off in momentum.

Equivalent if the ES mimics the
chiral edge mode spectrum.  0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14

ξ

P or Ky

ξmax (DMRG)

Pmax (MPS)



Benchmarking the MPS for the FQHE
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MPS is a highly accurate approximation on the cylinder with a
moderate perimeter (' 20− 30lB). A consequence of the area law.
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FQHE and topological entanglement entropy



Quantum dimension

Abelian states : one electronic wavefunction once the excitations
are fixed
Non-abelian states : Nbr of wfs depends on the number of
excitations Nexc

Fusion rules for the MR state :
σ × σ = 1 + Ψ,
1× σ = σ and Ψ× σ = σ
Nbr of fusion trees = nbr of
independent wfs

Here nbr of wfs ' 2Nσ/2 =
√

2
Nσ

.

s s

1,Y

2 excitations

2 possibilites

s s

1,Y
s

s
3 excitations

2 possibilites

s s

1,Y
s

s s

1,Y

4 excitations

4 possibilites

Quantum dimension da : for each topological sector a (i.e. type
of excitations), the internal Hilbert space grows like dNσ

a .



Topological entanglement entropy

2d topological phase → area law : SA ∼ αL− γ
Topological term γ = ln

(
D
da

)
Total quantum dimension D =

√∑
a d

2
a , da = 1 for an

abelian sector.

For an abelian state at filling ν = p
q , q abelian sectors.

Moore-Read : 4 sectors with d = 1 and 2 sectors with d =
√

2
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Topological entanglement entropy

A highly non-trivial example : the Z3 Read-Rezayi state
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b) RR quasihole

Pmax=10
Pmax=11
Pmax=12

(CFT prediction ' 0.96647)

We can extract the quantum dimensions of all topological
sectors.

Good agreement despite using the orbital partition (versus
real space cut)



FQHE and non-unitary CFTs



Composite fermions

Jain’s model (1989) :

Map FQHE into an integer quantum Hall effect for these
composite fermions.

ν∗ = N/N∗φ = p −→ ν =
p

2p + 1

Example : two filled effective Landau levels :

The ν = 2/5 Jain’s state is an abelian state with 5 topological
sectors. No simple CFT expression (see Hermanns et al.)



Non-unitary CFTs and FQHE

Non-unitary CFTs have at least one primary field with a
negative conformal dimension. Some correlation function for
the edge may diverge

〈O(x)O(y)〉 = |x − y |−2hO

But looking at finite size numerics, the bulk wavefunction
seems OK .

Hard to tell numerically if the bulk is gapless.

Example : Gaffnian state at ν = 2/5, non-abelian excitations
(like the Moore-Read state), built from the M(3, 5) minimal
model, quasihole field hσ = −1/20. High overlap with the
ν = 2/5 Jain’s state.

Can the MPS probe the pathology of this state ?



Topological entanglement entropy

What about the Gaffnian state ? ED/Jack L ' 17lB
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γ barely depends on the topological sector i.e. da = 1.

For an abelian state at ν = 2
5 , γ = ln

(√
5
)
' 0.805.

We only capture the abelian excitations.

Is there something wrong about our calculation ?



iMPS - Transfer matrix

Transfer matrix : E =
∑

m B [m]∗ ⊗ B [m].

How to compute the normalization of an MPS state ?
〈Ψ|Ψ〉 =

(
ENorb

)
(α,α),(β,β)

.

For a large number of orbitals, only the eigenstate with the
largest eigenvalue will matter.

The transfer matrix allows to do several calculations in a
simple and elegant manner for an infinitely long system
(iMPS) including the entanglement entropy.

We can extract the correlation length from the ratio between
the two largest eigenvalues λ1 and λ2 :

〈O†(x)O(0)〉 − 〈O†(x)〉〈O(0)〉 ∝ exp

(
−|x |
ζ

)
with ζ−1 = L

2πl2B
ln(λ1

λ2
)



Correlation length ζ
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The Gaffnian has a critical behavior in the qh sector of the bulk,
(where qh operator has a negative scaling dimension). The MR
state has the same corr. length in both sectors ζ ' 2.7lB .



Probing the excitations



Quasihole Sizes for Zk≤3 Read-Rezayi

density profile for Z3

Read-Rezayi quasiholes
+ : e

5 , x : 2e
5 , ∗ : 3e

5
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First numerical estimate for Read-Rezayi quasihole radius.
lB ∼ 10 nm ⇒ R ∼ 30 nm ; interferometer qh separation ∼ 100 nm



Braiding

conformal block basis

MR : |Ψa〉 =
σ σ σ σ

1σa
, a = 1, ψ.

RR : |Ψa〉 =
σ1

ψ2
a

σ1 σ1 σ1

ε
, a = ψ1, σ2.

compute Wilson loop by integrating non-Abelian Berry connection

Aab(η;dη) ≡ e−idηAab(η) ≡ 〈Ψa(η + dη)|Ψb(η)〉
||Ψa(η + dη)|| · ||Ψb(η)|| ,



Branch cuts and test of the screening

Usual assumptions : Link between 2 + 1 TQFT and 1 + 1
CFT

degeneracy = number of conformal blocks
braiding = monodromies

Branch cuts : monodromy, tested MR/RR (10−4)
Non-singular part : the non-universal could spoil everything
Controlled by overlap matrix 〈Ψa|Ψb〉 for fixed qh positions

Screening condition and Berry connection :
at large quasihole separation |∆η|, the overlap
converges exponentially fast to a constant
diagonal matrix,

〈Ψa|Ψb〉 = Caδab +O(e−|∆η|/ξab)

then the Berry connection vanishes up to an exp.
small correction Aab(η) ∼ O(e−|∆η|/ξab) after
subtracting Aharonov-Bohm phase.
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<
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Conclusion

MPS can be constructed for a large class of FQH model
states.

Quantum dimensions can be extracted from the microscopic
wavefunction (MR and RR).

MPS allows to directly probe the pathology some model wave
functions built from the non-unitary CFT.

First numerical estimate of the RR quasihole size.

Microscopic verification that the Z3 Read-Rezayi quasiholes
are Fibonacci anyons, without assuming screening.
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