Entanglement in electronic noise

Jean-Charles Forgues, Karl Thibault, Jean-Olivier Simoneau, Stéphane Virally, Farzad Qassemi, Gabriel Gasse, Fatou Bintou-Sane, Alexandre Blais, Christian Lupien & BR, Université de Sherbrooke Julien Gabelli, CNRS, Orsay, France

Canada Excellence Research Chairs

Chaires d'excellence en recherche du Canada

UNIVERSITÉ DE SHERBROOKE

11NTR1Q

D'INFORMATION QUANTIQUE

IT TRANSDISCIPLINAIRE

Fluctuations (noise)

Current vs. time for voltage perfectly stable: $I \neq GV$!

- Defects
- Temperature
- Discreteness of the electron charge
- Quantum mechanics itself: even vacuum fluctuates !

The system: a tunnel junction. The discreteness of charge is crucial !

Classical statistics of the current in a tunnel junction

Average current and noise in a tunnel junction (single channel)

Parameters that determine Γ_{\pm} :

- Voltage V
- Temperature T
- Conductance

$$\frac{\Gamma_{+}}{\Gamma_{-}} = \exp\left(\frac{eV}{k_{B}T}\right)$$

Average current:
$$\langle I \rangle = \left(\frac{e}{\tau}\right) \Gamma_{+} \tau + \left(\frac{-e}{\tau}\right) \Gamma_{-} \tau = e(\Gamma_{+} - \Gamma_{-}) = GV$$

Noise: $\langle I^{2} \rangle = \left(\frac{e}{\tau}\right)^{2} \Gamma_{+} \tau + \left(\frac{-e}{\tau}\right)^{2} \Gamma_{-} \tau = e^{2}(\Gamma_{+} + \Gamma_{-})$

At equilibrium: V=0, $\Gamma_{+} = \Gamma_{-}$, $\langle I \rangle = 0$ but $\langle I^{2} \rangle \neq 0$

At large voltage: $\Gamma_+ \gg \Gamma_-$ so $\langle I^2 \rangle = e \langle I \rangle$

Current fluctuations in a tunnel junction at low frequency

$$\left< \delta I^2 \right> = eIB \operatorname{coth}\left(\frac{eV}{2k_BT}\right) = BS_2$$

B=bandwidth

 $S_{2} = \begin{cases} 2k_{B}TG & \text{if } eV \ll k_{B}T \\ eI & \text{if } eV \gg k_{B}T \\ \text{Noise spectral density in A}^{2}/\text{Hz} & \underbrace{\text{Equilibrium (Johnson) noise:}}_{\text{macroscopic, fluctuation-dissipation theorem}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Shot noise:}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Shot noise:}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Shot noise:}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for the spectral density in A}}_{\text{Solution for the spectral density in A}} \\ \underbrace{\text{Solution for$

Experiment $S_2(\omega=0,T=4.2K)$

Tunnel junction made by L. Spietz at Yale

Electron-hole entanglement

Readout: noise !

$$P_{\text{noise}} = 2eV \frac{2e^2}{h} \tau (1-\tau) = 2e^2 \mathcal{E}_{\text{part}} / t_{\text{det}}$$

Variance of current fluctuations

Entanglement entropy that accounts for particle conservation

Each electron that crosses the barrier generates 1 entangled pair: I/e ebits/s Problem: entanglement is sensitive to dechoherence, noise is not

Connect/disconnect 1D conductors

 C_n = cumulant of transfered charge

PRL102 (09)

Zero frequency noise, V_{bias}=0

Some questions...

- Time plays the role of length. What is encoded in the frequency-dependence of the noise in terms of entropy ? Is there a spectral density for entanglement entropy ?
- Entanglement by absorption of photons: photo-assisted noise vs « energy-time » entanglement ?
- Entanglement of the electrons vs. that of the radiated field ?

Noise at finite frequency: existence of correlations

Correlation function:

 $C(V,\tau) = \left\langle \delta I(t+\tau) \delta I(t) \right\rangle$ $S(V,\omega) = \left\langle \delta I(\omega) \delta I(-\omega) \right\rangle$ Noise spectral density:

Current-current correlator in time domain: how successive electrons are correlated ?

- Average time between successive electrons per channel: (I/e)/M
- Conductance : G=Mpe²/h , with p=transmission =probability to cross the barrier at each attempt
- Average time between attempts: *h/eV*
- How regular is that time ?
- Classically: no correlation (Poisson)

Method: noise spectroscopy

- Measure the power of the emitted radiation vs. frequency on a very wide bandwidth: P(f)
- Calculate (Fourier transform) the current-current correlator: (I(t)I(t'))
- Relevant energy scales: millikelvin, microvolt, gigahertz !

Calibration

What is measured: $P(f) = G(f) [\alpha S(f) + S_a(f)]$

Gain of the amplifier, attenuation of the cables

Noise of the amplifier

Attenuation between the sample and the attenuator

Contribution of the amplifier: 5-100 K Contribution of the sample: tens of mK ! Calibration: S(V, T, f) = eI at high voltage Noise temperature: noise as an equivalent temperature

- Noise at equilibrium: S=2k_BTG
- In any situation, one defines the noise temperature: $T_N = S/(2k_BG)$
- T_N is the temperature at which a macroscopic resistor produces as much noise as the sample
- At equilibrium, T_N=T

Result: the tunnel junction at equilibrium (1D Planck's law)

Rescaling: one timescale, h/k_BT

The tunnel junction out of equilibrium: $V \neq 0$

Noise at equilibrium in time-domain: $C_{eq}(t) = \langle I(t')I(t'+t) \rangle_{eq}$

Problem: S diverges at high frequency because of vacuum fluctuations !

Our solution: we subtract the T=0 contribution: Thermal excess noise:

$$\Delta C_{eq}(t,T) = C_{eq}(t,T) - C_{eq}(t,T=0)$$

Out-of-equilibrium noise in timedomain: $C(t) = \langle I(t')I(t'+t) \rangle$

Theory: $C(t, V, T) = C_{eq}(t, T) \cos \frac{eVt}{h}$

Thermal excess noise: $\Delta C(t, T, V) = C(t, T, V) - C(t, T = 0, V)$ Expected:

 $\Delta C(t, V, T) = \Delta C_{eq}(t, T) \cos \frac{eVt}{h}$ Enveloppe: Oscillation !

Time-domain:∆C(t)

Oscillations with period $\tau=h/eV$!

Interpretation

- Electrons try to cross the barrier REGULARLY with a period h/eV. The temperature adds a jitter, typically given by h/k_BT.
- Interpretation: Pauli + Heisenberg principles: $eV \ge \Delta E \ge h/\Delta t$
- At equilibrium, only the thermal jitter remains.

Current noise / electromagnetic radiation

Current / voltage fluctuations = fluctuating electromagnetic field = white light !

Average power in a bandwidth $\Delta f \sim$ intensity of light:

$$\langle P \rangle = R \langle \delta I^2 \rangle = R S_2(f) \Delta f$$

= $[n(f) + \frac{1}{2}]hf$

Noise = average photon number

At equilibrium: Thermal (Johnson) noise = blackbody radiation !

S_2 in the quantum regime $\hbar \omega > k_B T, eV$

Tunnel junction R=50Ω

current (µA)

Squeezing ?

Current squeezing?

Experimental set-up

Result $\omega_0 = 2\omega$

Result $\omega_0 = \omega$

Two-mode squeezing ?

Correlation between quadratures at two different frequencies:

$$\langle X_1 X_2 \rangle \neq 0$$
, $\langle P_1 P_2 \rangle \neq 0$

Bell-like inequality to proove entanglement: $\langle (X_1 - X_2)^2 \rangle + \langle (P_1 + P_2)^2 \rangle \ge 4$

$$\begin{split} |\Psi\rangle &\approx |\cos \omega_1 t\rangle |\cos \omega_2 t\rangle + |\sin \omega_1 t\rangle |\sin \omega_2 t\rangle \\ &\approx |\uparrow\rangle |\uparrow\rangle + |\downarrow\rangle |\downarrow\rangle \end{split}$$

Experimental setup

Qualitative results: P(V_{ac})-P(V_{ac}=0)

Quantitative results: correlations

Criterion for entanglement !

Interpretation: noise modulation

- Noise at frequency f₁ modulated at f₂+f₁ gives a sideband at -f₂ with a well-defined phase, and vice-versa
- This works even at the single photon level !
- One can modulate the zero point fluctuations !

Noise susceptibility – How fast can one modulate noise ?

$$\left< \delta I(\omega) \delta I(\omega_0 - \omega) \right>$$

 $\partial S_2(\omega)$

Noise susceptibility – the quantum regime: experiment

Related ongoing projects

- Theory: how to link properties of the electrical current (i.e., electrons), with that of the radiated electromagnetic field (F. Qassemi, A. Blais)
- Experiment: measurement of the photon statistics of the squeezed electromagnetic field with linear detectors : photon pairs (J.-O. Simoneau, S. Virally)