Particle Entanglement in many-body quantum states

Kareljan Schoutens Institute for Theoretical Physics University of Amsterdam

UNIVERSITEIT VAN AMSTERDAM

Entangled15 – KITP - 16 April 2015

Entanglement measures for quantum states

entanglement measures

(topological) order, quantum critical properties, exclusion statistics, ...

How entangled are fqH states?

M. Haque, O.S. Zozulya, KjS PRL (2007), PRB (2007) (with E.H. Rezayi), PRA (2008) review on PE: JPhysA (2009)

Entanglement measures for quantum states

fqH state or mystery state in the Lowest Landau Level

How entangled are fractional quantum Hall states?

entanglement measures Can we determine the nature of a LLL quantum state based on entanglement measures?

???

How entangled are fqH states?

Orbital / spatial partitioning (OES, RES)

• reveals edge physics:

area law, topological entanglement entropy, ...

Particle partitioning (PES)

• reveals bulk physics:

state counting, exclusion statistics, condensation, ...

Bipartite entanglement measures

FqH wave functions on the sphere

- *N* fermions in spherical geometry, filling factor v [Haldane '83]
- monopole at center provides magnetic field; total flux 1

$$N_{\phi} = \frac{1}{v}N - S$$

- eigenstates of orbital angular momentum localized on latitude lines → Lowest Landau Level orbitals
- *l*-th orbital, $l = 0, 1, ..., N_{\phi}$ localized at distance $\propto 2\sqrt{l}$ from north pole
- spherical projection onto plane gives standard fqH wavefunctions

Orbital partitioning

• orbital partitioning A-block — orbitals $l = 0, ..., l_A - 1$

B-block — orbitals $l = l_A, \dots N_{\phi}$

• boundary between orbitals $l_A - 1$ and l_A located

at $r = 2\sqrt{l_A}$; expect asymptotic behavior

$$S_{l_A} \cong -\gamma + \alpha \sqrt{l_A}$$

v=1/3 Laughlin — orbital entropies

v = 1/3 Laughlin — extracting γ

best fit to $S_{l_A} \approx -\gamma + \alpha \sqrt{l_A}$ $\rightarrow \gamma = 0.51 \pm 0.14$

from TQFT / CFT $\gamma_3 = \ln \sqrt{3} = 0.55$

Entanglement spectrum (OES)

Li, Haldane (2008) Regnault, Bernevig, Haldane (2009) Zozulya, Haque, Regnault (2009)

- entanglement spectrum mirrors edge spectrum
- entanglement gap for non-model states

Particle partitioning

• particle partitioning

A-block – n_A particles

B-block – $n_B = (N - n_A)$ particles

$$\rho_{n_A}(\vec{x}, \vec{y}) = \int dz_{n_A+1} \cdots dz_N \psi^*(x_1, \cdots, x_{n_A}; z_{n_A+1}, \cdots, z_N)$$
$$\times \psi(y_1, \cdots, y_{n_A}; z_{n_A+1}, \cdots, z_N)$$

Particle entanglement: bounds

• n out of N bosons in L orbitals

$$0 \le S_n \le \ln \left(\begin{array}{c} L - 1 + n \\ n \end{array} \right)$$

• n out of N fermions in L orbitals

$$\ln \begin{pmatrix} N \\ n \end{pmatrix} \le S_n \le \ln \begin{pmatrix} L \\ n \end{pmatrix}$$

v=1/3 Laughlin—bounds

v=1/3 Laughlin - eigenvalue distribution

Laughlin states — improved bound

• using quasi-hole counting results [Read-Rezayi,1996] upper bound for the v=1/m Laughlin state improved as

$$S_A \leq \ln \binom{N_{\phi}^{+1}}{n_A} \longrightarrow S_A \leq S_A^{\text{bound}} = \ln \binom{N_{\phi}^{+1-(m-1)(n_A^{-1})}}{n_A}$$

• interpretation in terms of exclusion statistics:

the improved bound is precisely given by the number of ways n_A particles can be put into $N_{\phi} + 1$ orbitals, observing a minimal distance of m between adjacent occupied orbitals

v=1/3 Laughlin — improved bound

Laughlin states — improved bound

• numerical data-points follow improved bound quite closely

No. of particles in wavefunction, N

• 1/N expansion at $n_A << N$

$$\ln\binom{N_{\phi}+1}{n_{A}} - S_{A}^{\text{bound}} = \frac{1}{N} \frac{m-1}{m} n_{A}(n_{A}-1) + O(\frac{1}{N^{2}})$$

Particle Entanglement Spectrum (PES)

PES for v=1/3 Laughlin on the sphere, N=8, $n_A=4$

Sterdyniak, Regnault, Bernevig (2010)

Particle Entanglement Spectrum (PES)

PES for v=1/3 Laughlin (left) and Coulomb interaction groundstate (right), N=8, $n_A=4$

Sterdyniak, Regnault, Bernevig (2010)

Particle Entanglement Spectrum (PES)

Fractional Chern insulators : Entanglement spectra as a tool

Wu, Sterdyniak, Repellin, Regnault, Bernevig (2011)

PES for N = 12, $N_A = 5$, 2530 states per momentum sector below the gap as expected for a Laughlin state

Particle partitioning: lattice bosons

• bounds on entanglement entropy for *n* out of *N* bosons in *L* orbitals

$$0 \le S_n \le \ln \begin{pmatrix} L - 1 + n \\ n \end{pmatrix}$$

• S_n for interacting bosons?

Bose-Hubbard: *N*=*2* **particles on 2 sites**

U<<*o* : cat state

$$\frac{1}{\sqrt{2}}[(b_1^+)^2 + (b_2^+)^2]|0\rangle$$

U=*o* : BEC

$$\frac{1}{2}(b_1^+ + b_2^+)^2 |0\rangle$$

U>>o : Mott

 $b_1^+b_2^+\left|0
ight
angle$

Bose-Hubbard: N particles on 2 sites

Scaling form for interacting 1D bosons

Scaling form for interacting 1D bosons

 $S_n \approx a_0 n \ln N + b$ un-condensed fraction

Haque, Zozulya, KjS, PRA (2008)

Entanglement measures for quantum states

entanglement measures

to RES or to PES,

that's the question ...