How, when and where in pattern formation:
The regulatory knobs of evolution

i_:—»
Jacques P. Bothma and Hernan G. Garcia
Department of Molecular and Cell Biology

Department of Physics
UC Berkeley




Evolution of proteins and the
sequences regulating their expression
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Different scenarios for regulatory region evolution

Modify enhancers to create
new gene expression patterns
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This talk: A molecular exploration of the mechanisms
underlying promoter-enhancer interactions and their
potential role as an evolutionary substrate
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Fruit fly development Enabling technologies
to study the evolution for precise measurements
of gene regulation in embryonic development
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Fruit fly development as a case study
in enhancer-promoter choice

fertilization 3 hours
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The hydrogen atom of developmental biology

“There's a reason physicists are so successful with what they do, and that
is they study the hydrogen atom and the helium ion and then they stop”,
Richard Feynman
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Finding enhancers can be laborious!
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* Once you find your enhancer you stop!



Multiple enhancers drive overlapping
expression patterns in fly development
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Why have multiple enhancers?

Are these multiple enhancers the
equivalent of a gene duplication event?
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Shadow enhancers as case study in enhancer-
promoter interaction and specificity



A simple model of enhancer action
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Our model predicts the rate of mRNA production
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Accounting for the competition of
multiple enhancers
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Combined enhancer action cannot be higher than
the sum of their individual activities
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The state of the art in the field: Inferring dynamics
from static pictures of dead embryos
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A stop motion movie with a new
actor in each frame
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Surkova et al.,

Dev. Bio.

T8 ple 14A, T1 (O -bm1 n) (2008)

* Create a “movie” by pooling together embryos
of different time classes.
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Enabling technology to spy on development in
real time
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We can precisely measure timing of transcription
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* Elongation rate of
(1.54 + 0.14) kb/min,
consistent with single
cell and fixed
embryo results.
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The best of both worlds: Using dead embryos to
count single molecules
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Fruit fly development
to study the evolution
of gene regulation
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Combined enhancer action cannot be higher than
the sum of their individual activities
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An experiment to uncover the

contribution of “redundant” enhancers
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Wild-type hunchback expression dynamics

Histone RFP
MCP-GFP




hunchback: multiple enhancer action is not redundant
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hunchback can be additive and sub-additive
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hunchback can be additive and sub-additive
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Regimes of additivity and sub-additivity consistent
with enhancer competition for the promoter
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knirps enhancer activity
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knirps can be super-additive!
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Enhancer cooperativity is necessary to
explain super-additive activity
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Multiple regimes of enhancer action

Additivity
Weak enhancers working
independently of each other

Sub-additivity
Strong enhancer interference
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Super-additivity
Weak enhancers
working synergistically
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Why multiple enhancers?

Competition for the real Cooperative interaction
estate of the promoter with the promoter
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