

Necessity is the mother of *re*-invention

The parallel evolution of C₄ photosynthesis

Steve Kelly www.stevekellylab.com

Evolution of gene expression regulation

Evolution of genome organisation and composition

Methods for transcriptomics, genomics and phylogenetics

Genetic regulation of photosynthesis and engineering photosynthesis in rice

BILL& MELINDA GATES foundation

Outline

- Introduction to convergent and parallel evolution in the tree of life

Biological properties of organisms poorly correlated with their evolutionary relationship.

- Introduction to C₄ photosynthesis

What, why, when, & who?

- Parallel changes in gene expression

Changes in the expression of the same genes in different origins of C_4 photosynthesis.

- Parallel evolution of new genes by duplication

Parallel duplication of the same genes in multiple independent origins of C_4 photosynthesis.

Original

128 circles

256 circles

There are a limited number of environments on earth

Our expectation is that close relatives have more similar biology

Adapting to same environment => distant relatives evolve same biology

Adapting to same environment => distant relatives evolve same biology

Marsupial mole

European mole

Golden mole

Multiple examples of parallel/convergent evolution

Species	Kingdom	Taxonomic level	Phenotype	Types of evolution	Genes	Type of gene	Refs
ΦΧ174	Virus	Intraspecific (experimental evolution)	Adaptation to high temperature and a novel host	Parallel evolution	Multiple genes	NA	21,22
HIV	Virus	Intraspecific	Antiretroviral resistance	Parallel evolution	Reverse transcriptase gene	Effector	88,89
Escherichia coli	Monera	Intraspecific (experimental evolution)	Adaptation to glucose-limited medium	Parallel evolution	Multiple genes	NA	20
		Intraspecific (experimental evolution)	Adaptation to glycerol-based medium	Parallel evolution	Glycerol kinase (glpK) and RNA polymerase genes	Effector	86
Pseudomonas aeruginosa	Monera	Intraspecific (experimental evolution)	Adaptation to novel environments	Parallel evolution	Multiple genes	NA	24
		Intraspecific (experimental evolution)	Hyperswarming	Parallel evolution	Flagella synthesis regulator (fleN)	Regulatory	23
Saccharomyces cerevisiae	Fungi	Intraspecific (experimental evolution)	Adaptation to fluctuating glucose and galactose levels	Parallel evolution	GAL80	Regulatory	93
Diverse species of yeast	Fungi	Interspecific	Loss of galactose utilization	Parallel evolution	GAL genes	Regulatory	94
Ipomoea horsfalliae and Ipomoea quamoclit	Plantae	Intergeneric	Evolution of red flowers from blue flowers	Parallel evolution	Flavonoid 3'-hydroxylase	Effector	95
Arabidopsis thaliana and Arabidopsis lyrata	Plantae	Intraspecific and interspecific	Vernalization	Parallel evolution	FRIGIDA	Regulatory	96,97
Plants (multiple species)	Plantae	Interspecific	$\mathrm{C_4}\mathrm{photosynthesis}$	Parallel evolution	Phosphoenolpyruvate carboxylases (PEPC) genes	Effector	43,98, 99
Alloteropsis spp. grasses	Plantae	Interspecific	$\rm C_4$ photosynthesis	Collateral evolution by hybridization	PEPC and phophoenolpyruvate carboxykinase genes	Effector	52
Human (Homo sapiens)	Animalia	Intraspecific	Resistance to malaria	Parallel evolution	Glucose-6-phosphate dehydrogenase (G6PD)	Effector	100
		Intraspecific	Lactase persistence	Parallel evolution	Lactase (LCT)	Effector	101

Stern, D.L., Nature reviews genetics 2013, 14, 751 What are the genetic factors that underpin these re-invented traits?

Can we use this knowledge to engineer these traits into other organisms?

What are the genetic factors that underpin these re-invented traits?

Can we use this knowledge to engineer these traits into other organisms?

C₄ photosynthesis

C₃ plants express all photosynthetic genes in all photosynthetic cells

Photosynthesis in one cell

C₄ plants partition photosynthetic genes between specialised cells

C₄ plants partition photosynthetic genes between specialised cells

C₄ plants partition photosynthetic genes between specialised cells

C₄ photosynthetic partitioning evolved independently >60 times

Understanding the evolution of C₄ might be "useful"

Data Source: Evans & von Caemmerer 2000

Understanding the evolution of C₄ might be "useful"

Species from genus *Flaveria*

Data Source: Kocacinar et al 2008

Understanding the evolution of C₄ might be "useful"

What are the genetic causes of these re-invented traits?

Parallel changes in gene expression

Parallel duplication of genes

OrthoFinder

CRB-BLAST

Aubrey and Kelly *et al.* 2014 *PLoS Genetics*

Emms and Kelly 2015 *GenomeBiology*

iSplice

Novel splice intermediates Kelly *et al.* 2015 **NAR**

Alternative splicing Kelly *et al.* 2015 **JMB**

Smith-Unna et al. *pre-sub available on* bioRxiv.org

http://www.stevekellylab.com/software/

Parallel changes in gene expression

Comparative transcriptomics of 63 different species (34 C₄ and 29 C₃)

2.2 million different genes (30,000 gene families)

Parallel changes in gene expression

Global correlation in gene expression

113 genes up-regulated in all C₄ species

36 genes down-regulated in all C₄ species

Functional categorisation of differentially expressed genes

Category	Cell	Chloroplast	Mitochondrion
Metabolic components	15 (<mark>8</mark>)	29 (10)	6 (4)
Signalling components	18 (2)	7 (1)	0 (<mark>0</mark>)
Transporters	4(1)	9 (1)	2 (<mark>0</mark>)
Transcription regulators	4 (1)	0 (2)	0 (<mark>0</mark>)
Post transcription regulators	<u>3 (1)</u>	0 (0)	0 (<mark>0</mark>)
Other	4 (<mark>0</mark>)	1 (2)	0 (0)
Unknown	<mark>9 (3</mark>)	1 (<mark>0</mark>)	<mark>0 (0</mark>)
p = 112 $p = 26$	- La lua u		المصادر بيم من حمد الما

n= 113, n = 36

No. up-regulated (No. down-regulated)

Changes include previously characterised C₄ cycle components

Blue = Up regulated in C_4 species Red = Down regulated in C_4 species

Changes provide clues into evolutionary drivers of C₄

Many C₄ up-regulated genes also upregulated in arabidopsis in low CO₂

Liu et al. (2014) J. Exp. Bot.

Many C₄ up-regulated genes preferentially expressed in BS or M cells

Maize: Chang *et al.* (2012) *Plant Physiol.* Setaria: John *et al.* (2014) *Plant Physiol.*

Kelly et al. in prep

What are the genetic causes of these re-invented traits?

Parallel changes in gene expression

Parallel duplication of genes

Emms and Kelly 2015 GenomeBiology

Which genes duplicated coincident with the evolution of C₄?

What genes duplicated coincident with the evolution of C₄?

All retained duplication events

Genes associated with C₄

What genes duplicated coincident with the evolution of C₄?

Regulator of primary vein vascular patterning

Olga Sedelnikova

Jane Langdale

Summary

The evolution of C₄ involved hundreds of parallel changes

- Parallel changes in gene expression

149 genes change expression common to all dicot C_4 origins.

- Parallel evolution of new genes by duplication

21 genes duplicated in parallel in two independent C_4 origins.