Drift barriers and evolvability

Joanna Masel
University of Arizona

Drift barrier is where selection becomes as weak as mutation bias

Drift barrier theory

- Large N_e species are good at things, small N_e species are clumsy
- As problems accumulate in small N_e species, a second line of defense evolves: "mutational-hazard theory"
- In this second line of defense, it is the small N_e species that are the most exquisitely adapted, including many aspects of "complexity" at the level of genome architecture

Application: adapting to the threat of failing to stop at a stop codon, expressing a cryptic sequence

sequences of cryptic ther bad or ess, rarely in

between

Bimodality is like that of the distribution of fitness effects of new mutations

yeast

Eyre-Walker & Keightley 2007

Outline

- 1. 1st line of defense is benign cryptic sequences
 2nd line of defense is low error rate
- 2. 1st promotes evolvability
- 3. Evolution of evolvability
- 4. Data: high errors are associated with high evolvability
- De novo gene birth

2^{nd} line of defense: reduce the readthrough error rate ρ

Mutation bias favors misfolding of cryptic sequence

1st line defense: selection for a stable fold even after a readthrough error

Coevolution of ρ and L_{del}

Strong stabilizing selection on 2^{nd} line of defense ρ

Coevolution of ρ and L_{del}

Coevolution of ρ and L_{del}

Two attractors in large populations

Two strategies are quite different

2 strategies:

- ●: allowing deleterious sequences, but hiding them relies on 2nd line defense
- eliminating deleterious sequence by expressing them

emphasizes 1st line of defense, superior but subject to tough drift barrier

Two attractors for a range of population sizes (i.e. drift barrier locations)

Larger bistable range with more loci

Model applies to many kinds of molecular errors

	2 nd line defense	1 st line defense
Error	Global solution	Local solution
Stop codon readthrough	Accurate ribosome & release factors	Benign 3'UTR

Outline

- 1. 1st line of defense is benign cryptic sequences (local)
 2nd line of defense is low error rate (global)
- 2. 1st line of defense promotes evolvability
- 3. Evolution of evolvability
- 4. Data: high errors are associated with high evolvability
- 5. De novo gene birth

Effect on quantitative trait proportional to expression

Point mutation in stop codon → full expression of previously cryptic sequence (that won't misfold if error rate was high)

Environmental change in optimal trait value

Fitness

Trait value

Populations with high error rates evolve faster

New mutations

Cryptic variants

vesicular stomatic virus

Pre-adapting selection

Masel 2006, Rajon & Masel 2011

yeast

Evolvability comes from tapping into cryptic variants

- Molecular errors in the present mimic mutations in the future
- Strongly deleterious sequences are pre-purged in favor of benign ones
- Benign sequences are co-optable for adaptation

Benefits go to any "high error" locally benign cryptic sequences

More examples

- Promiscuous enzyme activities
- Rare protein-protein interactions (PPIs) that lose crypticity when proteins see each other more often

Aside: "cryptic" PPIs (deliberately bad yeast-2-hybrid data) are biologically meaningful

They predict gene noise and plasticity better than "real" PPIs (best practice affinity capture mass spec)

"Stickiness" trumps "hubness"

Outline

- 1. 1st line of defense is benign cryptic sequences (local)
 2nd line of defense is low error rate (global)
- 2. 1st line of defense promotes evolvability
- 3. Evolution of evolvability
- 4. Data: high errors are associated with high evolvability
- De novo gene birth

Evolution of evolvability

- Evolvability = byproduct of purging deleterious cryptic sequences at high N_e
- Adaptive "capacitors" switch on benign sequences during environmental change
 - E.g. yeast prion [PSI⁺] is a heritable but reversible way to increase stop codon readthrough
 - Only works when sequences are benign
- Are sequences more likely to be benign when "needed" often?

Recurrent environmental change tips a bistable system towards the high evolvability attractor

Changing environment

Nelson & Masel in prep

Environmental change briefly favors high errors, acting as an evolutionary capacitor

Temporary pulses in the read-through rate result in a loss of deleterious cryptic sequences.

Log (Read-through rate)

Outline

- 1. 1st line of defense is benign cryptic sequences (local)
 2nd line of defense is low error rate (global)
- 2. 1st line of defense promotes evolvability
- 3. Evolution of evolvability
- 4. Data: high errors are associated with high evolvability
- 5. De novo gene birth

Can we find a predictor of evolvability?

 Hypothesis: a hydrophilic, "floppy" addition from losing a stop codon should be tolerated better than a hydrophobic one that inserts into an existing protein fold

 Test by looking at 54 recent (polymorphic) yeast cases of stop codon loss → de novo C-termini. So recent that they are proxies for ancestor.

Andreatta et al. 2015

High intrinsic structural disorder is a preadaptation for joining a protein

Now link preadaptation (ISD beyond stop codon) to error rate (ribosomal profiling hits past stop codon)

Across all yeast genes, the high ISD preadaptation (high evolvability) is associated with high error rates

% Intrinsic Structural Disorder

Kosinski et al. in prep

Outline

- 1. 1st line of defense is benign cryptic sequences (local)
 2nd line of defense is low error rate (global)
- 2. 1st line of defense promotes evolvability
- 3. Evolution of evolvability
- 4. Data: high errors are associated with high evolvability
- 5. De novo gene birth

De novo gene birth

- Why aren't random polypeptides toxic?
- Explained if they are already under preadapting selection.
- Are there "proto-genes", i.e. non-coding transcripts that end up translated just a little bit, by accident, enough to purge out the deleterious options?

217/404 "non-coding" transcripts showed ribosomal association

Many individual "non-coding" transcripts have ORF-like ribosome densities

Ribosomal footprint locations match a 28aa ORF

Summary of ribosome profiling results

- Looks like a new coding sequence, but we don't know if polypeptide is functional
- Looks like de novo evolution
- Proof of principle of powerful method to annotate short de novo proteins
- Penultimate stage of gene birth is widespread

Most eukaryotic ORFans may have arisen de novo: what is special about them while young?

- Previous reports of high intrinsic structural disorder
- We hypothesize a need to avoid protein aggregation, although evidence on this has been scant

The two are confounded:
hydrophobic proteins have
low disorder and high
aggregation propensity

Most eukaryotic ORFans may have arisen de novo: what is special about them while young?

Conclusions

- 2 solutions to many molecular errors
 - high error rate, but robustness to each separate error (local solution, 1st line of defense)
 - low error rate via a proofreading mechanism for all sites (global solution, 2nd line of defense)
- High error rates pre-screen future variants, and so promote evolvability
- Biochemical correlates in the role of intrinsic disorder and aggregation propensity during de novo gene birth

Broader picture

- Waste and mess and errors are not just a typical biological nuisance
- Without waste and mess, creative evolutionary innovations may not be possible
- Looking for a clean molecular machine can miss the essence of biology

Thanks!

PPIs

Funding NIH

C-terminal

Pew Charitable Trusts

John Templeton Foundation

Theory Etienne Rajon

Paul Nelson

Luke Kosinski

extensions Matt Andreatta

Josh Levine

Eden Eaton

Lynette Guzman

Matt Cordes

Premal Shah (U Penn)

Dan Jarosz (Stanford)

De novo genes Ben Wilson

Scott Foy

Rafik Neme

Leandra Brettner