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Alternate title:

Why large populations favor mutators and small 
populations inhibit them



• PhD in physics (front propagation / population genetics)

• postdoc at Brown (Providence RI, near Boston), trying to be a 
“real”/experimental biologist

• Want to know “how evolution works”, particularly when        
evolution ≠optimization

• Also work on
– mutational robustness
– tradeoffs in enzyme evolution (Part 2, if we get there)
– protein stability: biophysical basis of fitness landscapes (epistasis)

About me…



Outline (Part 1)

1. Intro to mutators / mutation rate evolution

1. Simulations and mathematical analysis of mutation rate evolution
1. Population size matters, qualitatively: “sign inversion” happens
2. Sign inversion leads to “Simpson’s paradox”

2. Sign inversion and Simpson’s paradox occur in “indirect selection” in general?  
Mutators are a case study of more general phenomenon?

Jargon that we’ll get to:
• indirect selection
• sign inversion
• Simpson’s paradox



Mutators are variants with high mutation rates

•Proofreading and repair enzymes reduce mutation rate.

•These enzymes, too, can be broken by mutations.  Ex:

bp ~ 10-10
MutS+

bp ~ 10-8
MutS-



Mutators are variants with high mutation rates

•Proofreading and repair enzymes reduce mutation rate.

•These enzymes, too, can be broken by mutations.  Ex:

bp ~ 10-10
MutS+

bp ~ 10-8
MutS-

“Defective” genes involved in replication/repair fidelity are called 

mutator alleles.



Mutators play a major role in:

• laboratory microbial populations

• cancer 

• antibiotic resistance

• etc. etc.  

A puzzle: mutators often take over laboratory microbial populations (e.g. 

~1/3 of Lenski’s lines).  So why aren’t wild populations “mutators”?  

Mutators are found in natural and laboratory 

settings

μ μμμ

~ 10,000 generations

e.g. Lenski lines: serial E. coli transfer



Bare-bones model of mutator evolution

Typical parameter values for laboratory microbial populations

• M ~ 100 for MMR knockouts. Mild mutators certainly possible as well. 
• Ub ~ 10-6 to 10-5 per generation (Perfeito ‘07, Desai lab, Levy et. al 2015, etc)
• Ud ~ 10-4 per generation (e.g. Kibota and Lynch ’96)
• sb ~ 0.01 to 0.1 (e.g. Lenski
• sd ~ 0.01 (e.g. Kibota and Lynch ‘96)

Simplest simulations that include essential ingredients have 6 parameters:

• M = factor by which mutator’s mutation rate is elevated (e.g. 100x)
• Ud = deleterious mutation rate (per genome per genome duplication)
• Ub = beneficial mutation rate (per genome per genome duplication)
• sd = deleterious selection coefficient (~ % growth rate penalty of new 

mutation)
• sb = beneficial selection coefficient (% growth rate advantage of new 

mutation)
• N = population size (census or effective??)

note: shockingly high Ub (Ud/Ub only 10-100).  “Real” or idiosyncratic to lab environment?



Dynamics = haploid, asexual Moran model

# children/generation: Poisson w/ mean ~ fitness

Moran’s model is standard model of population 
genetics, incorporating 
• drift
• selection
• mutation
• other bells/whistles possible 

Other alternatives, e.g. Wright-Fisher, give 
essentially same results.  

figure credit: 
http://culturemath.ens.fr/

cartoon illustration:

forces FOR and       AGAINST mutators 

• excessive deleterious mutations
• beneficial mutations from non-mutators

• high rate of 
beneficial muts.



What does fitness mean for mutators?

But the simplistic approach is unproductive.  If we assume that mutators have no direct 

selective effect, then

initially: mutators are neutral

later, after mutations occur: 

• mutators usually linked to deleterious mutations and thus disfavored.

• occasionally hitchhike with beneficial mutations and thus favored.  

Message: “fitness” is ambiguous/stochastic because selection depends on 

random events (mutations) happening at random times.

Simplistic notion: evolution maximizes fitness.  And fitness = number offspring left 
per generation.   So, we can ask: “are mutators fitter than neutral expectation”?

tim
e

red: mutator allele
green: beneficial mutation (driver) 

mutators (can be) indirectly selected via 
linkage with directly selected sites.

Sniegowski et al, 2000



Fixation probability measures long term fitness

“ordinary fitness”: number of descendants left by a single individual during 1st generation
“long-term fitness”: number of descendants left eventually.  

• fitness = 1 means selectively neutral (lineage neither grows nor shrinks)
• Ordinarily, the sign of (fitness – 1) is the same in both short and long term: short-term 

predicts long-term, at least qualitatively.
• When analyzing mutators, we must think long-term.  Goal: calculate Pfix for mutators. 

Pfix

1-Pfix

invader

(mutator)

resident
Ultimately, two possible fates of any lineage:

• extinction

• fixation (achieve 100% frequency)

A better, more lineage-centric approach is via fixation probability:



How to calculate eventual Pfix for 1 mutator

: sweeps from non-mutators

: sweeps from mutators

fr

n = # mutators
f = probability (n  n+1)
r = probability (n  n-1)
Pn=fixation prob. of n mutators



How to calculate eventual Pfix for 1 mutator

fix now

fr

: sweeps from non-mutators

: sweeps from mutators

fr

n = # mutators
f = probability (n  n+1)
r = probability (n  n-1)
Pn=fixation prob. of n mutators



How to calculate eventual Pfix for 1 mutator

fix now

increase by 1, 
then fix

fr

: sweeps from non-mutators

: sweeps from mutators

fr

n = # mutators
f = probability (n  n+1)
r = probability (n  n-1)
Pn=fixation prob. of n mutators



How to calculate eventual Pfix for 1 mutator

fix now

increase by 1, 
then fix nothing happens; fix later

fr

: sweeps from non-mutators

: sweeps from mutators

fr

n = # mutators
f = probability (n  n+1)
r = probability (n  n-1)
Pn=fixation prob. of n mutators



How to calculate eventual Pfix for 1 mutator

fix now

increase by 1, 
then fix nothing happens; fix later

fr

This is the  “backward recursion equation” for Pi. We have 
to evaluate  f, r, σ± for this eq. to be of any use… 

: sweeps from non-mutators

: sweeps from mutators

fr

n = # mutators
f = probability (n  n+1)
r = probability (n  n-1)
Pn=fixation prob. of n mutators



f, r, and σ± in terms of experimental parameters (N, M, Ub, Ud, sb, sd )

key assumption #1:  deleterious mutations always go extinct (sooner or later: doesn’t 
matter when).  If that’s true, then we just have to keep track of # error-free mutators:

notes/observations:
• r and f don’t depend on sd (b/c we don’t care about the kinetics of extinction/fixation).
• When M > 1, r > f: selection against mutators b/c of deleterious mutations

key assumption #2: beneficial mutations occur “one-at-a-time” (neglect clonal interference) 
• This is a terrible approximation for large laboratory populations (b/c NUb >> 1). 
• But I’m focusing on small (or recently bottlenecked) populations, where assumption is OK.  
• So, probability that beneficial (driver) fixes is ≈ sb.  And “rate of sweeps”, (σ±) given by

M: mutators’ elevated mutation rate

N-1: non-mutators severely outnumbered initially



neutrality condition: P1 = 1/N, P2 = 2/N. After some algebra,

Recursion equation is easily solved in most interesting case: 

mutators on verge of favored/disfavored (i.e. neutral)

fix now

increase by 1, 
then fix nothing happens; fix later

Trading f,r, σ± for experimental parameters, we arrive at this:

Factors favoring mutators:
• Large Ub

• Small Ud

• Large sb

• Large N?  Can flip sign of inequality just by changing N?? “sign inversion”

: conditions favoring mutators



Average dynamics over many replicates

Population size dictates the direction of selection on mutation rate 

Analytic predictions re: “sign inversion” are borne out in explicit simulations, which
• relax “assumption #1” (that deleterious mutations must go extinct)
• relax “assumption #2” (which precluded clonal interference)

upward selection pressure on U
downward selectionpressure on U
“no” selection pressure on U

This is WEIRD!
• deeply population-level effect
• evolutionary outcome can’t be 

predicted from the properties of 
individuals.

• Is this “evolutionary cell biology??”

rest of talk: dig deeply into why sign inversion happens and what are consequences



solid line is Kimura’s formula:

Population Size (N)
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Pfix = 1/N
Pfix = 2s

kink: 2Ns = 1

selection dominatesdrift dominates

Sign inversion occurs because mutators are nearly  

impervious to drift

Seems weird at first, but true: Small 
N increases Pfix (b/c it’s easier to hit 
the absorbing state at n=N).

In this sense, “drift” increases 
chances of fixation



Population Size (N)

Fi
xa

ti
o

n
 P

ro
b

ab
ili

ty
 (

P
fi

x)
Sign inversion occurs because mutators are nearly 

impervious to drift

N ~ 1/sd N ~ Ud/Ub sb

Somehow, small N is not increasing Pfix for mutators
Why?: b/c they’re linked to (strong) driver/anchor mutations

key point: 2 critical N values for mutators, 
but only 1 for ordinary mutations.

solid line is fit to Kimura’s formula: circles = mutator simulations
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fitness=1: neutral

fitness >1: selected

~ 1/s

solid line is fit to Kimura’s formula:

Sign inversion occurs because mutators are nearly 

impervious to drift

sign inversion impossible in textbook 
case (Kimura’s formula): NPfix >= 1
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“Dip” on right-hand-side is direct consequence of “lag” of left-hand-side.

We hypothesize that the “dip” occurs in other instances of indirect selection, e.g.:

• beneficial mutations in a changing environment

• modifiers of recombination rate

Sign inversion occurs because mutators are nearly 

impervious to drift
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drift-barrier regime:
larger N inhibits mutators

sweep-dominated regime:
large N promotes mutators

“Dip” on right-hand-side is direct consequence of “lag” of left-hand-side.

We hypothesize that the “dip” occurs in other instances of indirect selection, e.g.:

• beneficial mutations in a changing environment

• modifiers of recombination rate

Sign inversion occurs because mutators are nearly 

impervious to drift



Further connection with drift-barrier theory

fix now

increase by 1, 
then fix nothing happens; fix later

Drift barrier theory (typicall?) neglects beneficial mutations (Ub=0).  In terms of the 
equation written above, this means that σ± =0 (no sweeps).  This leads to:

ex: (M-1)Ud = 10-2

This recovers the drift barrier prediction:
red: anti-mutators favored in large 
populations
blue: mutators favored in small populations 

But only if Ub=0!



Simpson’s paradox (in general)

Roughly: 

The direction of a trend changes 
when “things” are pooled.

See the excellent wikipedia on this!



Previous (experimental) example of Simpson’s 

paradox in microbial evolution:

Chuang et. al
2009

green: “producers”
white: “non-producers”

producers (≈ cooperators) lose every battle but win the war!!



Simpson’s paradox in mutation rate evolution

Simpson’s 
paradox



Future directions

1. Test theoretical predictions using fluorescently labeled yeast.  Control population 
size with periodic bottlenecks (this works in simulations).  

1. One man’s replicate wells are another man’s spatially structured meta-population.  
Is spatial structure sufficient to induce sign-inversion and Simpson’s paradox in :

1. simulations
2. laboratory yeast experiments

Eugene Raynes Paul Sniegowski



Summary

1. Mutators “lose” in small populations and 
“win” in large ones: “sign inversion”

2. We understand this effect analytically.

3. Sign inversion leads to Simpson’s paradox

4. The mechanistic origin of Simpson’s paradox 
may apply generically to other instances of 
indirect selection.

Thank you for your attention and, crucially, your wise criticisms!

Average dynamics over many replicates

win

tie

lose


