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Molecular networks: challenges from experimental data

Protein-protein interactions:
� affinity purification, Co-IP, two-hybrid, structural characterisation

Regulatory interactions:
� mobility shift,ChIP, protein-binding microarrays

Protein interaction network:
S. cerevisiae, Uetz et al. (2000)

Randomness vs. functionality can be addressed beyond sequence data



Analyzing biological networks I:

identifying local variations in network statistics: clusters

Domany group
Newman group
Spirin & Mirny



Analyzing biological networks II:

identifying local correlations in networks: network motifs

Alon group
Vergassola and collaborators

Berg & Lässig



Analyzing biological networks III:
identifying correlations across species

species A species B
� correlations reflect common evolutionary origin

I strongly conserved parts: functional core
I drastic changes: functional innovations

� may be needed to detect orthology if sequence similarity is insignificant



Detour: Sequence analysis

Statistical models to detect deviations from genomic background

� model for CpG islands

� model for sequence motifs: position-weight matrices

� model for correlated sequences

Comparison with model for the genomic background

� Log-likelihood score defined as S = log Q
P



Background model

Ensemble of uncorrelated networks with the same connectivities as the data

� probability wii′ of having a link depends on connectivities k−
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Feature distinguishing clusters: number of internal links

L(â) =
n

X

i,i′∈A

âii′

Statistics describing network clusters

Qσ(â) = Z−1
σ exp[σL(â)] P0(â)



Scoring network clusters

Log likelihood score

S(A, σ) = log

„

Qσ(â(A))

P0(â(A))

«

= σL(â(A)) − log Zσ

� positive score indicates likely clusters

� large scores indicate strong deviations from the null model

� compare clusters of different sizes

� determine scoring parameter σ by maximum likelihood
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Scoring network clusters
Log likelihood score
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Cluster of enzymes involved in the metabolism of pyridoxine and thiamin synthesis.

BERG & LÄSSIG, IN PRESS (2007)



Search for network motifs

A1

A2

A3

A

� patterns occurring repeatedly in the network
� building blocks of information processing [Alon lab]

I counting of identical patterns: subgraph census

� alignment of topologically similar regions of a network
I allow for mismatches



Search for network motifs

A1

A2

A3

A

Consensus motif
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Scoring network motifs

� enhanced correlation of subgraphs

� ensemble with enhanced number of links
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L(âα
)

3

5 .



Scoring network motifs

� enhanced correlation of subgraphs

� ensemble with enhanced number of links
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, âβ) + (σ − σ0)

p
X

α=1
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Scoring network motifs

� enhanced correlation of subgraphs

� ensemble with enhanced number of links

Motifs in the E. coli regulatory network (Alon data)

µ = µ
∗ = 2.25 µ = 5 µ = 12

BERG & LÄSSIG, PNAS (2004)



Scoring network motifs

� enhanced correlation of subgraphs

� ensemble with enhanced number of links
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Number of non-overlapping subgraphs and their mismatch versus mismatch penalty µ

BERG & LÄSSIG, PNAS (2004)



Cross-species network comparison

species A                                          species B
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Cross-species network comparison

species A                                          species B

Network alignment: Pairwise association of nodes across species

� networks represented by adjacency matrices Aij and BIJ

� network alignment is a mapping π : i → I between nodes in the two networks
� non-trivial interplay between sequence of a gene and position in the network:

I topology may be conserved even if sequences have diverged [functional constraints]
I function and position in the network may change with small sequence changes [binding sites]



Scoring network alignments

Evolutionary dynamics of links

� model of correlated networks: Q(a, b)

� model of uncorrelated networks: PA(a) PB(b)

cA
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cB
iji
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j

j



Scoring network alignments

Evolutionary dynamics of nodes

� Gain and loss of genes

� Loss of mutual sequence similarity

� Recruitment of a gene into a new function

loss of orthology

loss of node

non-orthologous
gene displacement



Scoring network alignments

Evolutionary dynamics of nodes

� Gain and loss of genes

� Loss of mutual sequence similarity

� Recruitment of a gene into a new function

Log-likelihood score
S(A) = Stopo(A) + Snode(A)

BERG & LÄSSIG, PNAS (2006)



Herpes genomics

� high rates of mutation and gene turnover

� ORFs are short (∼ 100aa)

� sequence homologs have ∼ 20% aa sequence identity



Herpes interactomics



Herpes interactomics

Alignment of KSHV/VZV: matching links and sequence homologs are shown green

KOLÁŘ, LÄSSIG & BERG (2007)



Herpes interactomics

Genomic position supports alignment



Functional predictions from network alignment

Alignment of KSHV Orf 28 – VZV Orf 65

� low sequence similarity of 10% over 100aa

� proteins aligned though link overlap: 3 matching links (p-value 10−3)

� functional prediction of KSHV Orf 28 as a virion protein

� prediction consistent with gene expression+mass spectroscopy experiments



Functional predictions from network alignment

Alignment of KSHV Orf 23 – VZV Orf 39

� no significant sequence similarity

� 3 matching links: alignment due to link similarity (p-value 2 × 10−2)

� functional prediction of KSHV Orf 23 as a membrane glycoprotein

� prediction consistent with gene expression experiments



Functional predictions from network alignment

Conserved cluster of interactions between structural genes (virion assembly)

� guilt-by-conserved association: identify modules from selection pressure

� slower link dynamics between nodes of the same function



Outlook

� compare biological networks across a range of evolutionary distances

� application to different types of networks: co-expression, metabolic, protein interaction,
regulatory

� infer evolutionary modes

Local moves: Link Dynamics node loss node replacement
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