An Evolutionary Hypothesis and Computational Identification of Insertional RNA Editing Sites

Ralf Bundschuh

Department of Physics, Ohio State University, KITP

Collaborators:

Tsunglin Liu, UCSB, Hayoun Lee, University of Rochester, Jonatha Gott, Neeta Parimi, Case Western Reserve University, Christina Ainsley, COSI Columbus

Outline:

- Introduction to RNA editing
- An evolutionary model for codon position bias
- How to find insertional editing sites
- Conclusions and outlook
supported by:
National Science Foundation (RB), National Institutes of Health (JG)
- Central dogma: DNA $\xrightarrow{\text { exact copy }}$ RNA $^{\text {genetic code }}$ protein
- RNA editing: RNA gets edited before it is translated
- Example: mitochondrion of Physarum polycephalum
- most prevalent editing event: C insertion
- e.g., a piece of nad7:

DNA ... CAGAATTGCGATCCACATAT GGGCTTCTACAT GAGGTACTGAAAAACTTATAGAACATAAGAATTTCTTACAATCT TCCTTATTTTGAT GTCTTGAT...
mRNA ...CAGAAUUGCGAUCCACAUAUCGGGCUUCUACAUCGAGGUACUGAAAAACUUAUAGAACAUAAGAAUUUCUUACAAUCUCUUCCUUAUUUUGAUCGUCUUGAU. . .

- other editing events: U insertion, dinucleotide insertions, $\mathrm{C} \rightarrow \mathrm{U}$ conversion
- Editing is frequent: one insertion per 25 bases on average
- Other types of RNA editing occur in all kinds of organisms: humans, plant organelles, nematodes, kinetoplastids, viruses
- Some RNA editing is implied in viral defense.
- Some RNA editing is directed by guide RNAs.
- Some editing enzymes have been identified.
- Main issues in general:
- What is the mechanism of RNA editing?
- How are editing sites recognized?
- What is the biological function of RNA editing?

Specifically in Physarum polycephalum:

- Editing is extremely reliable
- Editing occurs co-transcriptionally
- All known mitochondrial protein coding genes are edited
- Nearly all mitochondrial stable RNA genes are edited
- Nothing is known about the actual editing mechanism
- Nothing is known about the recognition of editing sites
- Nothing is known about the biological function
- 497 editing sites known \rightarrow later part of the talk
- 227 unambiguous C insertions in protein coding regions known
- Sort unambiguous C-insertions by codon positions
- Codon positions for editing sites in coding sequences

codon position	1	2	3
number	58	24	145
percentage	26%	11%	64%

- Codon bias surprising since RNA editing is co-transcriptional
- Can we understand the codon preference?
- Simple evolutionary model:
- No codon preference in editing machinery

CAG

- Base deletion occurs during sequence evolution
- Sometimes base deletion can be rescued by editing
- Results in effective replacement of original base by C

- Fitness of new sequence depends only on amino acid sequence
- Include mutations and insertions: complete evolution model

- Fitness given by similarity of amino acid to original amino acid according to BLOSUM62 similarity matrix
- Know states, transitions, and fitness
\Rightarrow can use Eigen theory to determine stationary state
- Average over all original codons
- Result:

- Insensitive to parameter choice

Note: our model implies that there is no other reason to choose the positions of most editing site but to "fix" the amino acid sequence

- Consistent with "cheap" editing
- Recent unpublished data from several organisms confirms random acquisition and loss of editing sites in myxomycetes
- How do we know the editing sites?
- Need to sequence both the genomic DNA and the RNAs
- Genomic DNA fully sequenced for Physarum polycephalum takano et al, 2001
- Sequencing RNAs is hard
- need to know where genes are
- need primers
- primers need to be complementary to edited RNA
- Situation for mitochondrion of Physarum polycephalum:
- six protein coding genes with experimentally determined editing sites in GenBank
- a handful of genes identified but editing sites not known
- several unidentified open reading frames
- four typical mitochondrial genes apparently missing
- Compare to Dictyostelium discoideum: 44 genes known
- Experimental determination of editing sites difficult
\Rightarrow computational prediction to be confirmed by experiment
- Main idea: use protein sequences from other organisms
- Pick gene to predict editing sites of, e.g., nad7
- Pick protein for this gene from another species, e.g., Neisseria menigitidis
- Find all related protein sequences out of GenBank
$\longrightarrow 510$ sequences for nad7
- Look at each position in multiple alignment

- Extract probabilities $p_{i}(a)$ to find amino acid a at position i

$i \backslash a$	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V
42	0.05	0.01	0.02	0.02	0.005	0.01	0.02	0.68	0.007	0.009	0.02	0.02	0.006	0.008	0.02	0.04	0.02	0.004	0.007	0.01
54	0.07	0.09	0.14	0.05	0.005	0.04	0.04	0.04	0.07	0.02	0.03	0.03	0.009	0.03	0.02	0.09	0.05	0.007	0.15	0.02

Editing site prediction:

- Start with genomic sequence
. . . CAGAATTGCGATCCACATATGGGCTTCTACATGAGGTACTGAAAAACTTATAGAACATAAGAATTTCTTACAATCTTCCTTATTTTGATGTCTTGAT . . .
- Insert C's and translate
...CAGAATTGCGACTCCACATATGGGCTTCTACATGACGGTACTGAAAAACTTATCAGAACATACAGAATTTCTCTACAATCTTCCTTATTTTGCATGTCTTGCAT...
- Calculate probability

$$
\begin{aligned}
& p(\ldots Q N C D S T Y G L \ldots)= \\
& \quad=\ldots p_{35}(Q) p_{36}(N) p_{37}(C) p_{38}(D) p_{39}(S) p_{40}(T) p_{41}(Y) p_{42}(G) p_{43}(L) \ldots
\end{aligned}
$$

- Defines "energy landscape" over space of 2^{N} discrete states
- Identify ground state \longrightarrow prediction of editing sites
- Use transfer matrix approach:
- Genomic sequence $b_{1} \ldots b_{N}$; protein model: $p_{i}(a)$ for $i=1, \ldots, M$
- Define $P_{i, j}$ as the probability of the most probable editing configuration ending at model position i and genomic position j
- Without editing:

$$
P_{i, j}=p_{i}\left(a a\left[b_{j}-2, b_{j}-1, b_{j}\right]\right) P_{i-1, j-3}
$$

- With editing:

$$
P_{i, j}=\max \left\{\begin{array}{l}
p_{i}\left(a a\left[b_{j}-2, b_{j}-1, b_{j}\right]\right) P_{i-1, j-3} \\
p_{i}\left(a a\left[C, b_{j}-1, b_{j}\right]\right) P_{i-1, j-2} \\
p_{i}\left(a a\left[b_{j}-1, C, b_{j}\right]\right) P_{i-1, j-2} \\
p_{i}\left(a a\left[b_{j}-1, b_{j}, C\right]\right) P_{i-1, j-2}
\end{array}\right\}
$$

$\Rightarrow O(N M)$ algorithm

- In reality include amino acid insertions and deletions, local similarities, and sequence context
- Check performance on known genes:

gene	amino acids	C insertions	off by			
			1	2	3	≥ 4
nad7	92%	$116 / 171=68 \%$	9	12	7	28
cox1	93%	$112 / 159=70 \%$	8	15	8	27
cox3	81%	$134 / 181=74 \%$	9	14	9	55
cytb	93%	$118 / 172=68 \%$	11	11	6	15
atp	93%	$106 / 152=70 \%$	7	8	4	15
pL	93%	$144 / 199=72 \%$	10	18	9	38
total	92%	$122 / 173=71 \%$	12	9	8	22

Real test: Finding new genes

- Search for missing genes nad2, nad4L, nad6, and atp8
- These genes could not be found by traditional gene finding
- Step 1: find location
- Pick a gene from the list
- Build PIE model for this gene from protein sequences of other organisms
- Cut genome into short overlapping pieces (length 1200 bases)
- Apply PIE to every piece of the genome
- PIE predicts best way to insert C's in each piece plus goodness measure
- Identify position of gene in genome by maximum in goodness measure

Step 2: primer design

- Primer has to be complementary to mRNA sequence
but: Do not know mRNA sequence
- Use PIE to predict editing site positions \Rightarrow know mRNA sequence but: PIE makes mistakes
- Assign reliability measure to PIE's predictions by calculating probabilities in Boltzmann ensemble

- Use to select primers
- Location of all four genes found
- All but one primer worked
- All four genes confirmed by sequencing of mRNA

- New editing type in Physarum: deletional RNA editing
- Total increase in known editing sites by 50%

	Previous coding	Total coding	Stable RNA	Previous total	total
Editing sites	250	390	107	357	497
C insertion	222	353	97	319	450
Unambiguous	140	227	66	206	293

Identification of editing sites IX

- Systematically search for all known mitochondrial genes
- Find 11 genes beyond the four experimentally verified ones
- Find 8 more candidates with lower statistical significance

- In total increased number of predicted genes from 11 to $26-34$
- Still have to be verified experimentally

Conclusions:

- Simple evolutionary model can explain codon bias
- Editing sites seem to be randomly acquired and lost

- RNA editing sites of known proteins can be computationally predicted with reasonable accuracy

Future directions:

- Comparative analysis of several organisms with editing
- Verify full genome predictions experimentally

