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Are base substitutions the leading small 
scale evolutionary process?



Microsatellites  abundant in higher eukaryotes
and

explain a large fraction of small gaps
Sinha, S. & Siggia, E. D. Mol. Biol. Evol.  (2005) 



Evolution by replication slippage

Viguera, E.,  Canceill, D. &  Ehrlich, S.D. The EMBO Journal (2001)



replication slippage rates  >>  base substitution rates >> background indel rates

!
local accumulation of gaps; polymorphic

!
Inference of correct alignment (phylogeny) difficult



• used as genetic markers

• regulation of gene activity

• involved in cancer and genetic 
disorders

• DNA metabolism

• Li et al., Molecular Ecology (2002)

Why were microsatellites studies?



Supply of novel sequence  ⇒ quantitative model

Why do we study microsatellites?

Grün, D. , Rajewsky, N. & Lässig, M. (2007), in prep.



A minimal model for repeat 
evolution



A composite object:

Doublets of Hamming distance i=0,1,2,... falls into 
error class i=0,1,2,...
with occupation number n0=2, n1=3, n2=1, ...

Composition distribution P(n0, n1)?
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Doublets are the dynamical units.



Elementary processes for microsatellite 
evolution:

initiation of novel microsatellites at rate γi

backward slippage at rate γ-

forward slippage at rate γ+

base substitution at rate µ 
inactive

CGCTCTTATAAGTCAA  ! CGCTCTTATTAGTCAA

CGCTCTTATTATTAGT  ! CGCTCTTATTAGTC

CGCTCTTATTAGTCAA  ! CGCTCTTATGAGTCAA

CGCTCTTATTAGTCAA  ! CGCTCTTATTATTAGTCAA



repeat statistics                       
and rate inference                   

from single species data



Microsatellites in D. melanogaster:

•identify microsatellites for distinct classes of genomic 
sequence using Tandem Repeats Finder (Benson, G. Nucleic 
Acids Res. (1999))



How does the composition distribution look like?

to include silent repeats or repeats containing units
with multiple mutations (d > 1) in the repeat cover-
age.

Stationary state. Eq. (1) determines a unique
time-independent doublet composition distribution
W (n0, n1), which is readily obtained by numerical
iteration. It depends only on the scaled slippage
rates γi/µ, γ+/µ and γ−/µ (which have magnitudes
γi/µ ! 1 ! γ+/µ < γ−/µ in the Drosophila genome,
see Results). Furthermore, the normalized distribu-
tions Pa and P0 in the decomposition (5) are in-
dependent of γi. Fig. 1(a) shows as an example
the doublet composition distribution Pa(n0, n1) (with
n0 > 0) for active trinucleotide (" = 3) repeats. The
stationary marginal distribution of perfect doublets,
pa(n0) ≡

∑∞
n1=0 Pa(n0, n1), can be computed ana-

lytically as

pa(n0) =
C

n0
e−αn0 with α = − ln

(
γ+

γ− + 2"µ

)

(6)
and the normalization C =

∑∞
n0=1 n−1

0 e−αn0 , see
fig. 1(b). A further characteristic of the full distribu-
tion Pa(n0, n1), the expected ratio of single-mutation
doublets and perfect doublets, is numerically ob-
served to be approximately independent of n0, which
defines an independent function of the scaled slippage
rates,

β(γ+/µ, γ−/µ) =
〈n1〉(n0)

n0
≡ 1

n0

∞∑

n1=0

n1Pa(n0, n1),

(7)
see also fig. 1(b). Eqs. (6) and (7) determine the ob-
served exponential decay of the marginal distribution
of the total doublet number n ≡ n0 + n1,

p̃a(n) ∼ 1
n

e−α̃n with α̃ =
α

1 + β
, (8)

which is also shown in fig. 1(b). Using (6), the sta-
tionary density λ of active repeats is then given by
flux balance between active repeats and background
sequence,

λ =
1

Ce−α

γi

γ− + 2"µ
+ O(γ2

i /γ2
−). (9)

Sequence growth and nucleotide turnover. The
stationary distribution Pa(n0, n1) is far from equi-
librium. The breakdown of time reversal symme-
try is quantified by the stationary probability flux
J(n0, n1) ≡ (J0 − J01, J01 − J1)(n0, n1) shown in
fig. 2(a) (which would vanish in an equilibrium state).
This flux expresses the age dependence of repeat
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Fig. 1: Repeat composition at stationarity.
(a) Doublet composition distribution Pa(n0, n1)
for active trinucleotide repeats (! = 3). Theoretical
distribution obtained from the mutation-slippage model
with scaled rates γ+/µ = ..., γ−/µ = ... (contour lines
... from left to right), genomic distribution for intergenic
regions of Drosophila melanogaster (contour levels).
(b) Marginal doublet number distributions pa(n0)
for perfect doublets and p̃a(n=n0 + n1) for all doublets;
conditional expectation value 〈n1〉(n0) ≈ βn0.
Theoretical curves given by eqs. (6), (8), and (7) (long-
dashed, full, and short-dashed lines); genomic data for
the same sequences as in (a) (open circles, filled circles,
diamonds).

characteristics, which will be exploited below for ge-
nomic inferences. The marginal flux of perfect dou-
blets, j(n0) ≡

∑∞
n1=0 J0(n0, n1), can again be ob-

tained analytically as j(n0) = j+(n0)−j−(n0), where

j+(n0) = γiδn0,0 +
γiγ+e−α(n0−1)

γ− + 2"µ
(1− δn0,0) (10)

j−(n0) =
γiγ−e−αn0

γ− + 2"µ
(11)

are the forward and backward components. In the
latter case we disregard the contribution proportional
to ρµ" which does not lead to seqeunce loss. Writing
the initiation rate as a sum of contributions due to
base substitutions and to insertion processes, γi =
γmut

i + γins
i , these currents determine the production

rate (per unit sequence length) of new nucleotides by

4
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analytical expression for the stationary configuration
 probability distribution:

Grün, D. , Rajewsky, N. & Lässig, M. (2007), in prep.



insertion within repeats of a given motif length !,

Γ+ = !

[
−γmut

i +
∞∑

n0=0

j+(n0)

]

= !

[
γins

i +
γiγ+

γ− + 2!µ

1
1− e−α

]
, (12)

and the growth rate of the sequence length L due to
repeat evolution for given ! (which can be positive or
negative),

ΓL ≡ 1
L

dL

dt
= !

[
−γmut

i +
∞∑

n0=0

j(n0)

]

= !

[
γins

i − γi(γ− − γ+)
γ− + 2!µ

1
1− e−α

]
. (13)

These expressions are important to quantify the
sequence turnover by microsatellite evolution, and
hence to estimate its importance compared to other
evolutionary modes.

Time-dependent distributions. It is straightfor-
ward to analyze the statistics of repeat life histories
by numerical iteration of the time-dependent solution
W (n0, n1, t) of eq. (1) with γi = 0 and with the ini-
tial condition W (n0, n1, 0) = δn0,1δn1,0 describing an
initiation event at t = 0. This solution can be decom-
posed in the form (5) with a time-dependent density
λ+(t) and composition distribution P (n0, n1, t) of ac-
tive repeats, which determines their age-dependent
expectation values

〈nd〉(t) ≡
∞∑

n0=1

∞∑

n1=0

ndP (n0, n1, t) (d = 0, 1) (14)

shown in fig. 2(b) and the cumulative distribution of
their lifetimes θ,

Prob(θ < t) = λ+(t), (15)

see fig. 2(c).

Repeat phylogenies. Repeats in homologous se-
quences are correlated, since they have evolved from
a common ancestor genome. For two species with a
divergence time τ , our evolution model predicts the
joint distribution W τ (n0, n1, n′0, n

′
1) of doublet num-

bers (n0, n1) in one species and (n′0, n′1) in the other
as a sum over states at the speciation point,

W τ (n0, n1, n
′
0, n

′
1) = (16)

∑

n′′
0 ,n′′

1

Gτ (n0, n1|n′′0 , n′′1)Gτ (n′0, n
′
1|n′′0 , n′′1)W (n′′0 , n′′1).
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Fig. 2: Age-dependent repeat characteristics.

(a) Probability flux J(n0, n1) at stationarity, quan-

tifying composition changes during repeat life histories

and expressing the breakdown of time reversal symmetry

(arrows not to scale for better readability). The region

of active repeats (n0 > 0) is shown unshaded, the

background region (n0 = 0) shaded, and the repeat

initiation current J0(0, 0) is highlighted (thick arrow).

(b) Doublet content. Model predictions of the

expectation values 〈n0〉(t) (dashed line) and 〈n1〉(t)
(solid line) with standard deviations (bars) as a function

of the repeat age t for model parameters as in fig. 1.

(c) Activity lifetimes τ . Predicted cumulative age

distribution Prob(τ < t).
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Life cycle of a microsatellite:



• Slippage rates:   γ+/µ = 4.6±1.2   γ-/µ = 2.7±1.2

• Initiation rate:    γi/µ = 0.1±0.01 

• Coverage:               λ = 1.8±0.1% 

• Constraint:     µ/µ0 = 0.94±0.16  (µb/µ0 = 0.56±0.02)

Inferred evolutionary rates for trinucleotide 
repeats in D. melanogaster:

γ+ >> µ >> γi
Dynamical Hierarchy:



Microsatellites are rare events and
 only survive due to 
random fluctuations

 permanent turnover of repeat elements, 
emergence at rate γi

γ+ > γ-     but    γ+ < γ- + 2µl 



insertion within repeats of a given motif length !,

Γ+ = !

[
−γmut

i +
∞∑

n0=0

j+(n0)

]

= !

[
γins

i +
γiγ+

γ− + 2!µ

1
1− e−α

]
, (12)

and the growth rate of the sequence length L due to
repeat evolution for given ! (which can be positive or
negative),

ΓL ≡ 1
L

dL

dt
= !

[
−γmut

i +
∞∑

n0=0

j(n0)

]

= !

[
γins

i − γi(γ− − γ+)
γ− + 2!µ

1
1− e−α

]
. (13)

These expressions are important to quantify the
sequence turnover by microsatellite evolution, and
hence to estimate its importance compared to other
evolutionary modes.

Time-dependent distributions. It is straightfor-
ward to analyze the statistics of repeat life histories
by numerical iteration of the time-dependent solution
W (n0, n1, t) of eq. (1) with γi = 0 and with the ini-
tial condition W (n0, n1, 0) = δn0,1δn1,0 describing an
initiation event at t = 0. This solution can be decom-
posed in the form (5) with a time-dependent density
λ+(t) and composition distribution P (n0, n1, t) of ac-
tive repeats, which determines their age-dependent
expectation values

〈nd〉(t) ≡
∞∑

n0=1

∞∑

n1=0

ndP (n0, n1, t) (d = 0, 1) (14)

shown in fig. 2(b) and the cumulative distribution of
their lifetimes θ,

Prob(θ < t) = λ+(t), (15)

see fig. 2(c).

Repeat phylogenies. Repeats in homologous se-
quences are correlated, since they have evolved from
a common ancestor genome. For two species with a
divergence time τ , our evolution model predicts the
joint distribution W τ (n0, n1, n′0, n

′
1) of doublet num-

bers (n0, n1) in one species and (n′0, n′1) in the other
as a sum over states at the speciation point,

W τ (n0, n1, n
′
0, n

′
1) = (16)

∑

n′′
0 ,n′′

1

Gτ (n0, n1|n′′0 , n′′1)Gτ (n′0, n
′
1|n′′0 , n′′1)W (n′′0 , n′′1).

a

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12

n
0

n
1

b c

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8  10  12  14

n
0
, 

n
1

t [Myrs]

<n0>(t)

<n1>(t)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25

P
r
o
b
(!
<
t)

t [Myrs]

Fig. 2: Age-dependent repeat characteristics.

(a) Probability flux J(n0, n1) at stationarity, quan-

tifying composition changes during repeat life histories

and expressing the breakdown of time reversal symmetry

(arrows not to scale for better readability). The region

of active repeats (n0 > 0) is shown unshaded, the

background region (n0 = 0) shaded, and the repeat

initiation current J0(0, 0) is highlighted (thick arrow).

(b) Doublet content. Model predictions of the

expectation values 〈n0〉(t) (dashed line) and 〈n1〉(t)
(solid line) with standard deviations (bars) as a function

of the repeat age t for model parameters as in fig. 1.

(c) Activity lifetimes τ . Predicted cumulative age

distribution Prob(τ < t).

5

Composition has predictive power for 
microsatellite age

...average age: 3 Myrs



cross species analysis



Sequence turnover by repeat duplication in 
D. melanogaster

test model predictions by cross species comparison 
between  D. melanogaster and D. simulans (2 Myrs)

How much novel sequence has emerged from 
microsatellites?



↓ ↓

ancestor

D. melanogasterD. simulans

lost in both

maintained
in both

maintained
in D. mel.

maintained
in D. sim.

novelnovel

25% of the repeats in D. melanogaster/D. simulans are 
species specific.

 60% of the species-specific repeats are novel.



Contributions to sequence turnover:

Γ+

ΓL

Why do we look at these two variables?
Selection can set in to maintain favorable sequence

+ ↓=

= Γ+ - ↓

↓

Sequence emergence rate:

Net growth rate:



Relative sequence turnover for trinucleotide repeats 
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Microsatellites contribute to sequence turnover to a 
similar extent like base substitution.

Grün, D. , Rajewsky, N. & Lässig, M. (2007), in prep.



•  microsatellites are genomic fluctuations

• composition allows prediction of age 

• in D. melanogaster, microsatellites                                  
are rare                                                            
mutate fast                                                    
contribute to sequence turnover comparably                                              
to base substitutions 

• need for progressive alignment tool to 
improve gap alignments and infer the correct 
phylogeny

Conclusions and future work
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