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Quantitative characterization of the lac promoter

Quantitative confrontation of model and experiment

 applicability of the thermodynamic description of tsx control?

 can the in vivo behavior of a system

             be understood in terms of its parts?

lac promoter of E. coli: 

• best-studied system of molecular biology

– all molecular components characterized

– many mutants studied in vivo

– most parameters measured in vitro

• exemplary model system of combinatorial gene regulation

– involves activation, repression, and DNA looping



Review of lactose utilization
• lac operon: pumps in lactose (LacY) and converts it to glucose (LacZ)

• lac promoter (Plac): express Lac only when lactose is present and glucose is absent
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molecular ingredients:
• specific protein-DNA binding

• protein-protein interaction

• protein-mediated DNA looping

theory: quantitative prediction of gene regulation by LacI, cAMP-Crp



Thermodynamic framework of gene regulation
[Shea & Ackers, JMB 1985]

gene expression  eq. promoter occupation probability P in the presence of A 

P [A],[RNAp]( ) =
W (0,1) +W (1,1)

W (0,0) +W (0,1) +W (1,0) +W (1,1)

define W(0, 0)=1, then for activation

W (0,1) = [RNAp] / Kp , W (1,0) = [A] / KA

W (1,1) = A p [A] / KA( ) [RNAp] / KP( )

P
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Review of lactose utilization
• lac operon: pumps in lactose (LacY) and converts it to glucose (LacZ)

• lac promoter (Plac): express Lac only when lactose is present and glucose is absent
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molecular ingredients:
• specific protein-DNA binding

• protein-protein interaction

• protein-mediated DNA looping

 theory: quantitative prediction of gene regulation by LacI, cAMP-Crp

 expt: characterize LacZ activity for different levels of regulatory proteins

     -- control protein levels by varying the inducers (IPTG and cAMP)



theory

Quantitative characterization

PlaclacI lacYlacZ

IPTG glucose

Crp AC

cAMP

 possible problems: complex links between 

         extracellular and intracellular inducer conc.

Plac:gfp on plasmid

Grow cells in medium with glucose, cAMP, IPTG

-- use glucose to suppress cAMP synthesis

-- control cAMP-level extracellularly

Previous expt: [Setty et al, PNAS, 2003] 

inconsistent with behavior of mutants:  

 lacI: > 1000x; crp > 50x 

3x

10x

100x
1000x



Quantitative characterization of mutants

IPTG

Crp AC

cAMP

weak cAMP dependence: glucose-mediated

 repression of AC activity may be incomplete
glucose

 delete cyaA gene (encoding AC)

 find ~100x change in LacZ activity

 Hill coeff  2

incompatible w/ biochem and

thermodynamic model of tsx control

PlaclacI lacYlacZ

 CRP2 +  cAMP ⇌ CRP2:cAMP

100x
slope 2

CRP dimer activated by binding of

single cAMP molecule

in vitro biochem irrelevant? 

other effects exerted by CRP-cAMP?

(expect Hill coeff = 1)



Quantitative characterization of mutants

IPTG

Crp AC

cAMP

weak cAMP dependence: glucose-mediated

 repression of AC activity may be incomplete
glucose

 delete cyaA gene (encoding AC)

 find ~100x change in LacZ activity

 Hill coeff  2

incompatible w/ biochem and

thermodynamic model of tsx control

PlaclacI lacYlacZ

in vitro biochem irrelevant? 

other effects exerted by CRP-cAMP?

 cAMP degraded by PDE (cpdA)

 effect of cpdA deletion? 

 Hill coeff  1, agrees with model

 role of PDE: no known phenotype

 mechanism of cooperativity?

100x
slope 2

slope 1

 CRP2 +  cAMP ⇌ CRP2:cAMP

CRP dimer activated by binding of

single cAMP molecule

(expect Hill coeff = 1)



IPTG dependence: cyaA- cells with [cAMP]=0

        very cooperative! (Hill coeff  4)

 delete lacY 

 constitutive expression of LacY

       only shifted IPTG dependence

IPTG

Crp AC

PlaclacI lacYlacZ

  Quantitative characterization of mutants

100x

slope 4

slope 2

Hill coeff  2

             Hill coeff = 2 is one of 

the many pseudo-facts regarding Lac

 Hill coeff = 2 widely cited in literature

but…

• LacI forms tetramer (dimer of dimers)

• strong coupling within each dimer and 

  weak coupling between dimers
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  Quantitative characterization of mutants

• LacI forms tetramer (dimer of dimers)

• strong coupling within each dimer and 

  weak coupling between dimers

IPTG dependence: cyaA- cells with [cAMP]=0

        very cooperative!

• LacI4-IPTG binding non-cooperative

     LacI4 +  IPTG  ⇌ LacI4:IPTG

• weakly cooperative in the presence of

     operator DNA (Hill coeff = 1.4 ~ 1.6)

 neither monomers of LacI dimer can

bind IPTG for specific binding to Lac ops

[R] =
2 [LacI4 ]total

1+ [IPTG] / KIPTG( )
2

active

repressors

tsx activity
1

1+ [R] / KR

simple

repression

[Matthews lab, ‘85]

OR3

KR

auxiliary Lac operators stabilize 

LacI-O1 binding via DNA looping [Muller-Hill]
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• LacI forms tetramer (dimer of dimers)

• strong coupling within each dimer and 

  weak coupling between dimers

IPTG dependence: cyaA- cells with [cAMP]=0

        very cooperative!

 

[R] [R]+
L

0
[LacI4 ]total

1+ [IPTG] / KIPTG( )
4

• include DNA looping in model

L
0
: local increase of [LacI] due to looping

auxiliary Lac operators stabilize 

LacI-O1 binding via DNA looping [Muller-Hill]

• LacI4-IPTG binding non-cooperative

     LacI4 +  IPTG  ⇌ LacI4:IPTG

• weakly cooperative in the presence of

     operator DNA (Hill coeff = 1.4 ~ 1.6)

 neither monomers of LacI dimer can

bind IPTG for specific binding to Lac ops

[R] =
2 [LacI4 ]total

1+ [IPTG] / KIPTG( )
2

active

repressors

tsx activity
1

1+ [R] / KR

simple

repression

[Matthews lab, ‘85]

 increase fold-repression by L
0
-fold

 effective Hill coeff (1.5 ~ 3) depends on L
0

but value of L
0
  not known independently 
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auxiliary Lac operators stabilize 

LacI-O1 binding via DNA looping [Muller-Hill]

 increase fold-repression by L
0
-fold

 effective Hill coeff (1.5 ~ 3) depends on L
0

but value of L
0
  not known independently 

slope 2

240x

slope 3

1600x

looping model w/ L0  12, 2[LacI4]/KR = 20 

 single parameter L0 fits both

       fold-repression and slope

cAMP

Crp
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OR1
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slope 2

240x

slope 3

1600x
cAMP

Crp

Fried et al, 84; 

Balaeff et al, 04

Crp-dependence of DNA looping

in vitro study found coop. factor  = 4 ~12 

 single parameter L0 fits both

       fold-repression and slope

  8
L

looping model w/ L0  12, 2[LacI4]/KR = 20 



Direct probe of DNA looping in vivo

[Oehler & Muller-Hill, 06] 

Use dimeric LacI mutant 

 cooperativity in IPTG response requires

     DNA looping (Lac tetramer + auxiliary ops)

Hill coeff = 2.5 

Hill coeff = 1.5

data well-fitted by DNA looping model

remove auxiliary operators

 IPTG-LacI-operator interaction same as in vitro 



Summary

• main findings for the lac promoter:

– Crp enhances DNA looping

– abrupt IPTG response despite non-cooperative LacI-IPTG interaction;

 suggests physiological role of Crp-cAMP as enhancer of repression

– mechanism of Crp-LacI interaction?

– coop cAMP response due to PDE; physiological function? mechanism?

• general lessons for quantitative systems biology:

– hidden interaction abound even for the “best studied” system

– pseudo-facts abound even for the best known components

– quantitative description of in vivo biology is possible

– need solid, qualitative knowledge of the components (e.g., Hill coeff)

– (semi) quantitative characterization generates spectrum of phenotypes

provides clues for identifying unknown components and mechanisms

provides phenomenological description of Plac for high-level studies

theory E. coli MG1655

(cyaA-,cpdA-,lacY-)
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aa

de novo evolution of regulatory sequences

TF activation controlled thru inducer a

Selectable output:
-- gene product lethal if drug 1 present

-- gene product essential if drug 2 present

selection gene(s)

e.g, inverter gate

Defined region of mutagenesis

Steady level of regulatory protein A

A

A

A

want gene expression only in the presence of inducer “a”

ON2hi

OFF1lo

genedrug[a]



Directed evolution of core promoters

 evolve promoters from random sequences

        in a tight space (29 nt) using mutagenic PCR

 select for cells with increasing resistant to Cm

 expect two variants of the 70 core promoter:

         -10/-35 hexamers: TTGACA<-- 17nt -->TATAAT

         extended -10: TGTGNTATAAT

 two selection genes: divergent overlapping promoters possible?

p15A ori

cmR

ampR

kanR

29N
in vitro mutagenesis

 dependence on evolutionary path?



• initial

– initial population: random library of 29mer
ligated into selection plasmid

– transform plasmid in E. coli (TOP10) cells;

transformation efficiency ~104 indept clones
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increasing drug concentration

• selection

Evolution procedure

• mutagenesis
– plasmid prep

– mutagenic PCR of insert seq

   (substitution freq ~5%/base)

– re-clone into initial vector,

   and re-transform into initial strain

…

• selection

– grow on plates with various drug conc

    ( CM and/or kan )

– collect several hundred clones 
         with the highest drug resistance

p15A ori

cat

ampR

kanR

29N

CM

Kan

all intermediate clones “saved” for future analysis 



 Semi-quantitative phenotype assay

Cm = 0 Cm = 10 µg/ml

: Max drug resistance for the clone

Cm = 33 µg/ml Cm = 100 µg/ml

Characterize distribution of phenotypes at each stage of evolution

• collect 96 clones

• grow on agar plates with different drug conc

• identify max drug resistance

make histogram



Evolution in single direction: phenotypeEvolution in single direction: phenotype

CM

kan
p15A ori

cat

ampR

kanR

29N



Evolution in single direction (CM): genotype

TGTG*TA**AT

5’ 3’ primers
mutable region

catRBS

promoter

sequence

after 2s

promoter

sequence

after 5s

TGTGGTAcAAT and much more …

comparative 

“genomics”



• up to 7 partial promoter motifs packed in 29-nt region + flanking regions

•               every                         attributable to additional motif(s)fixed mutation(almost)

Degeneracy of evolved promoter (Cm direction)

after 1st round (Cm resistance = 1 x 33ug/ml)

after 5th round (Cm resistance > 10 x 33ug/ml)

• typical run has 2 - 3 stronger motifs (both Cm and Kan directions) 

no rush• no consensus motif, and               to improve existing motifs

• correlated evolutionary dynamics (epistatsis) Why?

-- stronger expression from multiple promoters?

-- robustness to mutation provided by multiple copies?

Benefit: makes subsequent evolution of activators/repressors easier



Multiple promoters seen in bioinfo studies
[Huerta & Collado-vides, 03]

• avg of 38 putative promoter signals

observed in a typical 250bp region

upstream of gene start;

• in 50% of these regions, the “real”

promoter is not the highest scoring

promoter 



Reversal of evolution direction: phenotype

Kan resistance decreasing

CM resistance increasing

    appearance of divergent promoter activity

4 rounds of selection in Kan direction

CM

kan

revert selection 

to CM direction

p15A ori

cat

ampR

kanR

29N



Reversal of evolution direction: genotype

TGNTATgAT

aTGAtA cATtAc
17 bp

kanRATGATATGATCGACGGAAGAGTACATTAC

TACTATACTAGCTGCCTTCTCATGTAATG

5’

5’cat

Sequences obtained after 4th round of selection with Kan only:

-- one extended -10 motif and one -35/-10 motif in the Kan direction

-- no significant motifs detected in the Cm direction

TcATATNGT

TAAcAT AtAGTg
17 bp
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ATTGTATGATCGGCGGAAGAGTATATCAC

TAACATACTAGCCGCCTTCTCATATAGTG

5’

cat

kanR

5’

TATcAcTTGtat
16 bp

Sequences after 2 more rounds of selection with Cm only: 

-- one extended -10 and one standard -35/-10 motifs in Cm direction

-- weakened -10/-35 motif  and lost extended -10 and in the Kan direction



Evolution in both directions: phenotype

Kan direction

( x 50 ug/ml)

CM direction

( x 33 ug/ml)

kan

CM
p15A ori

cat

ampR

kanR

29N

 evolution slightly slower than that driven in single direction (5 vs 4 rounds)



cat

3’5’

Evolution in both directions: genotype  (5 rounds)

 found two types of overlapping motifs:

cTcACA                         cgTAAa

gAgTgT                         gCAtTT
16bp

-35 overlaps -10

5’

5’

catkanR

-35 -10

-35-10

 gTGgCg                         TATAcT

TAATAT                    cCtGgc

17bp

17bp

-10 overlaps -10 (with -35 on flanking sequences)

5’

5’
catkanR



Summary: promoters are flexible!

• Reversal:
– existing promoter evolve quickly to reverse direction by few mutations

– reduction of promoter activity in the reverse direction important (occlusion)

• Single direction: multiple promoters in confined space

• Divergent overlapping promoters:

cTcACA                         cgTAAa

gAgTgT                         gCAtTT
16bp

-35 overlaps -10
5’

5’

catkanR

-35 -10

-35-10

 gTGgCg                         TATAcT

TAATAT                    cCtGgc

17bp

17bp

-10 overlaps -10 (with -35 on flanking sequences)

5’

5’
catkanR

-10-35

-10 -35



From molecules to system-level functions

traditional mol bio:
one gene, one process

(e.g., A activates B)

systems biology:
many components and processes

(e.g., predictive modeling of cell 

and multi-cellular organisms)

many genes, 

one/few process(es)

(e.g., genome-wide

survey of gene exp)

high throughput methods

bioinformatic analysis

quantitative analysis 

of individual nodes 

and small circuits

who talks to whom

how they talk

qualitative system-level properties 

depend quantitatively on 

the degree of regulation



Natural switches (e.g., phage lambda)

• induction time to switch: < 10 min

• ingredients for fast speed
– proteolysis

– auto-activation and repression

• induction time to switch: ~ 6 hrs  (several cell divisions)

• slow speed possibly due to passive dilution

aTc
IPTG

lacItetR
Plac’ Ptet’

gfp

“speed limit of gene regulation”      [Rosenfeld et al, Science, 2005]

[Gardner, Cantor and Collins, Nature 2000]

Synthetic genetic switch

Q: faster switch using the same components?



lacItetR
PlacPtet

cmR

aTc IPTG

kanR

AlternativeAlternative  switch: face-to-face promoter constructswitch: face-to-face promoter construct

• induction time needed for switching ~ 15min (fast)

• stability: 6-8 hours

• large fold-change in induction (LacZ and GFP activity) 

• fast switch also in the reverse direction

> 50x

generate variants, screen for desired phenotype growthCmR

growthKanR

IPTGaTc
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