Genome-wide views of aging gene networks

Stuart Kim Depts. Developmental Biology/Genetics Stanford University

Human Aging Phenotypes Young Old

Individual

Tissue

Genes

Kidney as a model for human aging

- Filtration rate declines with age
- Easy to test function
- 74 samples (age 27-92)

74 donors

Age	Number
<41	4
41-50	10
51-60	16
61-70	13
71-80	20
81-90	10
>90	1

Divide into cortex and medulla sections

Genome-wide scan for gene expression changes

447 age-regulated genes in the human kidney

0

Each row is a gene

Yellow is high level expression Blue is low level expression

Each column corresponds to a person, youngest to oldest

left: Cortex right: medulla

+3

Medulla

-3

Cortex

Age-induced genes

Marker of physiological age?

VS

Molecular profiles reveal Physiological Age?

Medulla

Cortex

- Measure kidney function and appearance "biological age"
- See if genes correlate • with time or appearance of kidney

Normal

Glomerulosclerosis (0-4)

arterial intimal hyalinosis (0-4)

@ 2003, Elsevier Limited. All rights reserved

Normal

• 2002 Elever Listed All rights reserved. tubular atrophy and²⁰⁰³ Elever Listed All rights reserved. interstitial fibrosis (0-4)

© 2003, Elsevier Limited All rights reserved

© 2003, Elsevier Limited. All rights reserved

Combine into chronicity index (0-12)

patient 40 (29 years old with a chronicity score of 0)

patient 62 (84 years old with a chronicity score of 10)

Gene expression profiles predict kidney physiology

Transcriptional profiling of the aging mouse (data from AGEMAP consortium)

C57BL/6 Mice

1, 6, 16, and 24 months

5 male/5 female per age point

Mouse 17K A/B arrays

-

Mouse Tissues

Adrenal Glands Kidney Bone Marrow Liver Cerebellum Lung Cerebrum **Muscle Spinal Cord** Eye Gonads Spleen Heart Striatum Hippocampus Thymus

617 gene arrays total

346 Thymus genes change expression levels with age

Varying amounts of age-regulation in different tissues

Nine tissues exhibit significant age-regulation in the mouse

Do tissues in the mouse age similarly?

11 tissue pairs share common patterns of aging

Tissues ^a	Adrenals ^b	Cerebellum	Eye	Gonads	Heart	Lung	Spleen	Spinal Cord	
Cerebellum	> 0.05							° 	
Eye	> 0.05	> 0.05							
Gonads	10 ⁻⁴	> 0.05	> 0.05						
Heart	0.042	> 0.05	10 ⁻¹²	> 0.05				s 	
Lung	0.047	> 0.05	> 0.05	0.027	10 ⁻⁹				
Spleen	> 0.05	> 0.05	> 0.05	> 0.05	0.0125	10 ⁻²¹			
Spinal Cord	> 0.05	10 ⁻⁶	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	>	
Thymus	10 ⁻⁴	> 0.05	> 0.05	10 ⁻³⁶	> 0.05	> 0.05	> 0.05	> 0.05	

^a Fisher's exact test of independence on age-regulated genes (p < 0.01) for all two tissue pairings

^b *p*-values for Fisher's exact tests of independence

Three patterns of mouse tissue aging

Vascular: Heart, Spleen, Lung

Glandular:

Thymus, Gonads, Adrenals

Neural: Cerebellum, Spinal Cord

Similarity in aging in different species?

Lund et el., 2001

Pletcher et al., 2000

K. Becker, unpub. data.

Gene Set Enrichment Analysis

- Entire pathways more sensitive than single genes
- Assay 624 gene sets (10-200 genes)
- Use van der Waerden statistic to determine which pathways are coordinately changing with age

22 gene sets are commonly ageregulated in human and mouse

A public age-regulated pathway

Human p<	Mouse <i>p</i> <	Fly <i>p</i> <	Worm <i>p</i> <			
0.01	0.02	0.001	0.001			

Reactive Oxygen and the Electron Transport Chain

Comparison of aging at the global level

Human and mouse show no global aging similarity

8932 genes

-3

3

16 tissues

 8932×8932 correlation differences

Clusters That Change With Age

6 months

16 months

24 months

Correlation Difference: Method

1) Create correlation matrix from expression data for older (24 months) and younger (16 months) mice

	1 Expt	Expt 2	Expt 3	Expt		,	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6
Gene 1	.22	.14		.12	Snearman	Gene 1	1.000	0.059	-0.990	-1.000	1.000	-0.310
Gene 2	.05	.21	.3	05	Spearman	Gene 2		1.000	0.025	-0.725	-0.215	-0.865
Gene 3	23	.12	10	.24	acmalations	Gene 3			1.000	-0.387	0.099	0.294
Gene 4	.13	.14	.02	-	correlations	Gene 4				1.000	1.000	-0.011
Gene 5	-	03	- 14	- 06		Gene 5					1.000	-0.196
Gana 6	02	16		2		Gene 6						1.000
Gene	.02	10	08	.3								

2) Use fisher transformation to normalize correlations

$$t = 0.5 \log \frac{1+r}{1-r}$$

3) Subtract (young - old) correlations

Correlation differences with age

Higher in young

Higher in old

More clusters have decreased correlation with age than

Cluster examples:

Cluster enriched in electron transport genes (cluster 84):

22

Cluster enriched in both telomere maintenance and DNA damage repair genes (cluster 99):

Identifying Tissue Specific Effects in Loss of Correlation

- $r_1 r_2 = \sum (d_{1i}^2 d_{2i}^2)$
- For each experiment you can calculate that experiments contribution to the difference in correlation (d_{1i}² - d_{2i}²)

Identifying Tissue Specific Effects in Correlation Loss

• Ex: cluster with enrichment for nerve ensheathment genes:

Molecular markers of human

aging

Jacob Zahn Sarah Kummerfeld Heather Wheeler Lucy Southworth

Art Owen, John Higgins, Ron Davis, Rick Myers, Hannes Vogel,

Kim Lab

CHIGAN

Lucy Southworth, Heather Wheeler, Flo Pauli, Sarah Kummerfeld, Min Jiang, Lena Budovskaya, Stuart Kim, Xiao Liu, Jacob Zahn, Kendall Wu, Adolfo Sanchez-Blanco

> **Collaborators** Graham Rodwell (Neph) Art Owen (Stat) Kevin Becker (NIA) AGEMAP Team (NIA)

t: Ellison Medical Foundation, NIH, NIA