Core Promoter Analysis

Uwe Ohler

Institute for Genome Sciences and Policy

Duke University

uwe.ohler@duke.edu

Computational Biology of Gene Regulation

Focus of my group:

- Sequence Analysis
 - In this area, we mostly work on models of (conservation of) regulatory regions
 - Modeling of transcription start sites
 - Condition-specific regulatory motifs
 - Also: Post-transcriptional regulation
- Image analysis
 - New high-throughput data source to study gene expression
 - On single gene level, but precise spatiotemporal information (in living organisms)

Steps in gene regulation

An extremely simplified view of eukaryotic transcription

- Specific information about functional context of genes: proximal promoter/enhancers
 - Binding sites of specific transcription factors confer activation at the right developmental stage or tissue
- General information: the core promoter
 - Region around the transcription start site (TSS) where RNA polymerase II (pol-II) interacts with general transcription factors
 - Potentially far away from the translation start site

Interactions in core promoters (simple "modules")

CGTGCTGCCTCCCAATAAACCCGGTGCAGTGAG<mark>TCAGTG</mark>TGTTGTTGTGCCCCAGTCGCGAGC<mark>GACGA</mark>TC

[Other known variability: tissue-specific TAFs; TRFs]

Species specific differences

- The core protein complex is conserved, but the cis-regulatory sequences are not (quite)
- Example: TATA box
 - Ca 80 nt upstream in yeast, 25 nt in other eukaryotes
- Example: Initiator
 - A strong 5-6 nt motif in flies, a weak 2 nt preference in mammals
- Example: CpG islands
 - A mammalian phenomenon related to DNA methylation
 - 50-60% of genes have it

Inferring TSSs from genome wide data

- Oligo-capped cDNAs
 - 5' mRNA cap structure is replaced by a unique synthetic oligo (RIKEN cap-trapper; Stapleton et al 2002)
 - "guarantees" that cDNA is sequenced up to the 5' end
- 5' SAGE/ CAGE
 - High-throughput version: sequence only the first 15-20 nt of each transcript
 - Yields a profile of TSS actually used in the cell
 - Yeast (Dietrich/Duke), Mammals (Carninci/RIKEN): > 11 mio. Tags
- Important issues: TS site vs region vs alt. TSS; definition/conservation of TSS

High throughput pictures of TSS usage

- High-throuput
 SAGE approaches
 (5'SAGE/CAGE)
 provide extensive
 data on individual
 transcription
 initiation events
 - Here: mouse

Carninci et al, Nat Genet 2006

Is transcription initiation a sloppy event?

- CAGE data seems to indicate so
- Related: evolution of core promoters in bacteria
 - Started with a random pool of ~35nt long sequences as promoters of a selective gene
 - Selection & mutation by error-prone PCR
 - Instead of one strong promoter, the result was a set of overlapping weak initiation sites [Terry Hwa lab, UCSD]
- Possibility: Often, there is no strong pressure to maintain one precise start site
 - But: reproducible tissue-specific differences [Kawaji et al., Genome Biol 2006]

Inferring TSSs from cDNAs

- Clustering EST alignments (2001/2002)
 - 237,471 5' EST sequences aligned with sim4 (Florea et al.)
 - 1,941 cap-trapped clusters selected as follows:
 - Only if spliced or overlapping gene annotation
 - Only most 5' cluster with minimum distance 1,000 bp
 - >30% of ESTs in cluster within a 5' window of 10 bp
- Comparison with 205 known promoters (CPD, Kutach and Kadonaga, 2000)
 - Consensus strings allowing 1 mismatch
 - Inr: TCA(G/T)T(C/T) within –10/+10
 - CPD: 67.3%, our set: 62.8%
 - TATA box: TATAAA within –45/-15
 - CPD: 42.4%, our set: 28.3%

Motifs found in core promoters

Mo tif	Pictogram	Pictogram Consensus			
1	GATACCCTCACACTE CAREACTER CONTROL OF CATACOCT CAREACTER CONTROL OF CATACOCT CAREACTER CONTROL OF CATACOCT CATAC	YGGTCACACTR	311	5.1 e-415	
2 DRE	AGCTATOCATAGCA GERALOUALITAGEA GERALOUALITAGEA	WATCGATW	277	1.7 e-183	
3 TATA	GGGTATAAAAGCCCGG CCCAAAAAAAAAAAAAAAAAAAA	STATAWAAR	251	2.1 e-138	
4 INR	ITC GT GE ITT CG	TCAGTYKNNNT	369	3.4 e-117	
5 Ebox	AAACAGCTGII	AWCAGCTGWT	125	2.9 e-93	

Motifs found in core promoters

6	ITTICA AGECAUTATITTICA AGECAUTATITTICA	KTYRGTATWTTT	107	1.9 e-62
7	TITGCA TAINTAGC EGGC TAINTAGC EGGC TAINTAGC	KNNCAKCNCTR	197	1.9 e-63
8	AGGCGCCAGCGCCCCCCCCCCCCCCCCCCCCCCCCCCC	YGGCARCGSYSS	82	5.1 e-29
9 DPE	CGACCCCIGCCGTTC	CRWMGCGWKCG GTTS	56	1.9 e-12
10 MTE	CGAACGGAACGG	CSARCSSAACGS	40	8.3 e-9

Positional distribution of motifs

Validation/definition of MTE

Analysis of Mutations in the MTE That Do Not Overlap with the DPE

WT

14

Frequency of co-occurrence

Motif X	% seqs w/	% seqs w	ith Motif	X also cor	ntaining M	otif below	,	
	X	M1	DRE	TATA	INR	M6	DPE	MTE
M1	25.1	100.0	21.3	13.1	12.7	28.3	4.9	6.1
DRE	26.0	20.6	100.0	14.9	16.8	14.1	5.7	6.9
TATA	19.3	17.1	20.1	100.0	28.9	14.4	4.8	9.4
INR	26.3	12.1	16.6	21.1	100.0	12.1	14.9	12.9
M6	15.8	45.1	23.2	17.6	20.3	100.0	4.6	4.2
DPE	7.9	15.6	18.8	11.7	49.4	9.1	100.0	8.4
MTE	8.5	18.2	21.2	21.2	40.0	7.9	7.9	100.0

A new core promoter module

- Motif 1 has a weak preference for location at the TSS
- The motif 6/1 pair is reminiscent of the TATA/Inr module

Core promoter motif modules

- TATA box/Inr: much less frequent (<25%)
- Motif 2: DNA replication element (DRE) factor binding site
 - Part of complex with TBP-replacing factor 2 (TRF2) in TATA-less promoters (Hochheimer et al, Nature 2002)
- DPE+MTE: Two distinct downstream motifs
- Motif 1: correlates with TSS location and motif 6
- → several subclasses of core promoters (depending on TFIID/DNA conformation?)

McPromoter system structure

Computational approaches

- Have a long history recognizing E.coli promoters was one of the earliest "annotation" efforts
- Two (heuristic) approaches early on:
 - Signal/motif-based: explicit modeling of binding sites
 - Content-based: similar to ORF recognition
- Later: Combination
 - Probabilistic models, e.g. HMMs (generative)
 - Support vector machines (discriminative)
- TSS recognition vs. coding gene start recognition
 - Some approaches use additional gene features

Modeling promoter subclasses

- Split promoter training set in overlapping partitions defined by the presence of core promoter modules
 - ~85% of promoters have a good hit to at least one of these motifs
- Perform iterative cross-validation re-assignment (similar to k-means)
- -> Five parallel core promoter models
 - MTE does not form stable class of its own
- Performance on classification promoter/non-promoter:
 - 94% equal recognition rate (up from 89%);
 ROC integral 0.98 (1.0 means perfect classification)

Clustering of core promoters

Modeling promoter subclasses

5 subclasses of *Drosophila* core promoters

Comparison of results, Adh region

92 promoters from full-length cDNA alignments

Positive region: -500/+50
 (Sn: sensitivity; Sp: specificity; AP: addtl predictions/nt)

McPromoter 2002 (one model)		Sharan & 2005	Myers	McPromot (five model			
Sn	Sp	Sn	Sp	Sn	Sp	AP rate	
20	69	20	79	23	91	1/426,590	
37	51	35	53	36	79	1/94,797	
52	40	50	33	50	47	1/16,097	
67	29	65	20	64	36	1/8,203	

Alternative transcription start sites

- A large fraction of genes has more than one TSS
- Here, we mean distinctly separate TSS
 (~100 nt or more apart, not small scale fluctuation)
 - Alternative 5' UTRs
 - Alternative translation start sites
 - Tissue-specific promoters
- Prominent example: e.g. protocadherin genes

Evolution/turnover of TSS

- If core promoter motifs are only there to define a TSS, they should frequently turn over
 - Position changes
 - Motif changes, i.e. TATA box replaced by DPE
- If they however provide context information, this should not be the case
 - Core promoter/enhancer interaction
 - Tissue-specific activation of alternative TSS

Scenario I: Conservation

- Alignment of human and mouse promoters
 - TSS is inferred in one species and mapped to other species by genomic alignments

Jin et al., BMC Bioinformatics 2006

Scenario II: Turnover of TSS

Revisiting TSS

- Refined cluster protocol for ESTs
 - Large groups: Separated by > 100 nt
 - Enough tags available: Determine TSS positions
 - Requirements:
 - TSS defined by >=2 tags, with >=3 tags within 10 nucleotides;
 - Upstream of annotated ATG
 - Library-specific information
- Two RIKEN libraries: embryo and adult head
 - Embryo: 2,872 genes w/4,046 TSS
 - Head: 1,682 genes w/2,144 TSS
- Total: 3,683 genes w/6,190 TSS

Current dataset

- More stringent criteria to include TSS from other libraries
- Example:

```
Corresponding_TSS_frequencies [(4)(3)(4)(7)]

Number_of_tags_from_RE_RIKEN_EMBRYO [(0)(0)(0)(0)]

Number_of_tags_from_RH_RIKEN_HEAD [(4)(0)(0)(7)]

Number_of_tags_from_LD_EMBRYO [(0)(0)(0)(0)]

Number_of_tags_from_GM_OVARY [(0)(1)(0)(0)]

Number_of_tags_from_HL_ADULT_HEAD [(0)(0)(0)(0)]

Number_of_tags_from_GH_ADULT_HEAD [(0)(1)(0)(0)]

Number_of_tags_from_LP_Larvae_Pupae [(0)(0)(0)(0)]

Number_of_tags_from_SD_SCHNEIDER_CELLS [(0)(1)(0)(0)]

Number_of_tags_from_UT_ADULT_TESTES [(0)(0)(4)(0)]

Number_of_tags_from_UT_ADULT_TESTES [(0)(0)(0)(0)(0)]

Number_of_tags_from_OTHERS [(0)(0)(0)(0)(0)]
```

Example of a complex TSS arrangement in Drosophila

- CG33113: Chr 2L
- TSS position/#tags/array support:
 - 5006561 (15) 1-2
 5004921 (5) 8
 5000362 (21) 3-6
 4999500 (4)
 4997377 (10) 5-8

Related work

Sequence logo	Consensus sequence	Name	Common name	Ohler #	8-mers in con- sensus	Peak bps from TSS	CF+	CF-	Pooled peaks	Unique genes
TATAAA	STATAAA	DMp1	TATA	3	30	-32	24	2	48-49	511
TCAGT	TCAGTY	DMp2	INR	4	101	-2	29	2	49-51	1,501
TCATTCG	TCATTCG	DMp3	INR1		5	-2	15	3	50-51	113
<u> </u>	KCGGTTSK	DMp4	DPE	9	10	+25	14	4	51-52	147
CGGACGTG	CGGACGT	DMp5	DPE1		11	+26	18	3	51-52	80
CACCCCT	CARCCCT	DMv1			5	-60 to -41	11	5	47-51	311
TGG_AAC	TGGYAACR	DMv2		8	11	-20 to -1	13	5	46-51	311
CA _T C_CTA	CAYCNCTA	DMv3		7	11	+1 to +20	18	4	46-52	604
GGTCACAC	GGYCACAC	DMv4		1	42	-20 to -1	23	7	46-51	649
TGGTATTT	TGGTATTT	DMv5		6	3	-60 to -41	11	5	45-51	287

Sequence logo	Consensus sequence	Name	Common name	Ohler #	8-mers in con- sensus	Peak bps from TSS	CF+	CF-	Pooled peaks	Unique genes
GAGAGCG	GAGAGCG	NDM1	GAGA		2	-100 to -81	6	11	44-47	360
CGctGcCg	CGMYGYCR	NDM2			3	-80 to -61	6	3	45-47	424
GAAAGCT	GAAAGCT	NDM3			2	-60 to -41	9	5	44-47	215
ATCGATA	ATCGATA	NDM4	DRE	2	48	-60 to -41	13	12	45-51	1,593
CAGCTGTT	CAGCTSWW	NDM5	E-box	5	5	-20 to -1	10	9	46-52	1,184

FitzGerald et al., Genome Biol 2006

More data does not equal good data

Berendzen et al., BMC Bioinformatics 2006

Key points

- Core promoters are quite variable
 - Diverse set of core promoter modules
 - New (fly) core promoter elements: MTE, DRE, M1/6
 - Scenario I: Specific enhancer/TF interactions; tissue-specific regulation
 - Scenario II: Alternative options, no functional correlation
- Computational *Drosophila* promoter recognition currently most accurate
 - Models of core promoter subclasses improve success of computational strategies
 - Mammalian promoters lack most of these motifs; instead, CpG islands dominate
- Conservation/alternative TSSs

Evolution of regulatory regions

- A popular area: comparative analysis of regulatory regions
- Current Problem: accurate evolutionary models for noncoding sequences
- Many comparative genomics algorithms involving TF binding sites assume perfect alignments
 - But: How do we know how well our algorithms deal with TF evolution?
 - How often do alignment/motif finding programs lead to a comprehensive picture?
- -> Simulate complex regulatory regions to evaluate/design (new) algorithms

This is really not new...

- Has been done quite extensively
- Key assumption: TFBS are islands of conservation within larger not-so-conserved region -> use two sets of rates [Pollard et al., BMC Genomics 2006]
 - What about turnover events?
- Instead: Model evolution with one rate, but subject to constraints
 - Assuming neutral evolution/stabilizing selection which other sequences are possible?
- Bad stuff upfront:
 - Ignores trans-factor and adaptive evolution
 - Ignores population genetics

The framework

- Simulate 1,000 ancestor sequences
 - 3rd order background, human upstream sequences
- Evolve each one 1,000 times
 - Get a distribution of features in the evolved set

Sequence length	250 nt
Substitution Model	HKY85
Transition: Transversion	20:1
Point substitutions : insertion/deletion	10:1
InDel length model	Geometric (p=0.5)

A simple example

- Set of constraints:
 - This is the difference to related efforts, e.g. Pollard et al. 2006

GC content	45%-55%
Number of E2F sites	1
E2F location relative to TSS	[-50, -100]
DNA strand of E2F site	+
Cutoff threshold of E2F site	0.90

- Not thought to be a precise model
- Rather, to get some idea how frequent
 - current alignment algorithms work
 - more complex turnover events may happen

Results: E2F site turnover

0.1 substitutions/site

0.5 substitutions/site

Turnover at various distances

Poisson distribution for # turnovers:

$$Pr(N>0) = 1 - Pr(N=0) = 1 - Exp(-\lambda t); \lambda \sim 0.08$$

Simulated starting set

E2F promoters as starting set

Evolving along two branches

- Now: distance fixed for human/mouse
- free parameter shown: spacer E2F/TSS
- Prob. for turnover in both species

Pair of E2F/myc

E2F location relative to TSS	[-50, -100]	
Myc location relative to TSS	[-100, -150]	
Copy number of E2F	1	
Copy number of Myc	1	
DNA strand of E2F site	+	
DNA strand of Myc site	+	
Additional space constraint between Myc and E2F sites	[50, 60]	

No spatial constraint

With spatial constraint

Evaluate alignment accuracy

- Simulate evolution over various scaled trees
- Once simulated, run global multiple aligners
 - mlagan, mavid, muscle, dialign, clustalw
- We can then trace back which sites did not turn over and should be aligned
 - Neutral evolution -> we know all sites are there
- We are nice (of course :)
 - Turnover, but no change in order of sites
 - Accuracy: averaged over pairwise alignments

Mammalian sequences

Name	Accession#	Len	Strand	Location (min, max)	Copy # (min, max)	Cutoff
YY1E2F	MA0095 (YY1)	13	+	(20, 30)	(1, 1)	0.90
	MA0024 (E2F)					
Pax6	MA0069	14	+	(50, 70)	(1, 1)	0.90
TP53	MA0106	20	+	(360, 400)	(1, 1)	0.90
IRF2	MA0051	18	+	(420, 480)	(1, 1)	0.90
PPARG	MA0066	20	+	(2000, 2080)	(1, 1)	0.90
ROAZ	MA0116	15	+	(2100, 2200)	(1, 1)	0.90

Accuracy w/increasing #species

Accuracy for individual factors

Summary pt II

- There is an open issue with aligning non-coding sequences
 - Current aligners do not scale well with increasing number of species
 - Alignment accuracy suffers
 - Assessing site turnover may be lost in the noise [Pollard et al., 2006; Moses et al., 2006]
- Developed a general tool to simulate non-coding evolution
 - Based on constraints and not on a different evolutionary model
 - Next step: TSS evolution

Thanks to...

Motifs

Elizabeth Rach Weichun Huang Bill Majoros

UC Berkeley/BDGP
Gerry Rubin
Martin Reese
Guo-chun Liao
Josh Kaminker

UC San Diego Jim Kadonaga Lab

Alfred P Sloan Foundation, NSF Computational Biology & Bioinformatics Program http://tools.genome.duke.edu/generegulation

Images

Dan Mace

Phil Benfey Lab
Ji-Young Lee
Todd Twigg
Juliette Colinas

Rob Clark Lab

