Population Genetics on Gene Regulation and Gene Duplication

Gene expression in balanced state

Gene duplication: perturb the balance

Fitness effect:

Difference between Regulatory proteins and Structural proteins

Examples:Transcription factors vs olfactory receptors or immunoglobulins

Cis-regulatory elements: Turnover

even in constant expression

within allowed latitude

Example Ludwig et al. 2000

Stripe2 elements of even skipped

D. melanogaster vs D.pseudoobscura

Genomics on expanding gene families

Population genetics: Not simple processes

of mutant substitutions

Gene duplication (segmental or transpositional) and gene conversion continuously occur

Examples of gene conversion: mostly structural proteins

MHC, immunoglobulins, proteases and their inhibitors

Evolution is characterized by interaction of selection and gene conversion.

Positive selection on reactive center

Promoter regions:
Selection against spurious binding sites
(Hahn et al. 2003)

Binding sites: underrepresented in genomes of
Bacteria and Archaea
Very weakly selected against

Adaptive evolution of transcription factor binding site

Fitness: Function of binding interaction between transcription factors and DNA

Mutation-selection-drift equilibrium CRP site sequences in E. Coli mean Ns < 1 0

Mustonen- Laessig 2005

Coevolution between binding sites and transcription factors

Selective constraints at various levels

Effect on the rate of gene duplication in

evolution

Drift and selection

New duplications: mostly deleterious

Rare beneficial duplications, and considerable fraction of neutral and nearly neutral duplications

Protein evolution

dN/dS

Human > pig > rodent Jorgensen et al. 2005

Human > dog > mouse Lindblat-Toh et al. 2005

Hominid > rodent
The Chimpanzee Sequencing Consortium 2005

Yeast lab. Strains > yeast wild strains Gu et al. 2005

Polymorphism

Human SNPs: Abundant rare alleles

Bacteria 84 species Tajima's D

Dnon 68% negative

Dsyn 70% positive

Hughes 2005

McDonald-Kreitman test Sawyer-Hartl test

Human and chimpanzee amino acid change

Positive selection 9.0%

Weak negative selection 13.5%

Range of 2Ns: $-10 \sim +10$ (peak at 0)

Bustamante et al. 2005

Ratio of gene expression divergence between species to gene expression diversity within species human-chimpanzee

About equal in the brain, heart, kidney, liver but threefold higher in testes
Positive selection in testes, mainly on X chromosome

Brain: Ratio of the change of the human lineage to that of the chimpanzee lineage is larger than the same ratio in the liver or heart Indication of positive selection in the human lineage

Khaitovich et al. 2006

Lynch-Force 2000

Duplication-Degeneration-Complementation

DDC model: Drift

Our interest

Subfunctionalization: Mainly regulatory proteins Robustness of networks

Neofunctionalization: Mainly structural proteins

Phenotype Complexity

Cooption-Duplication-Divergence of mainly regulatory protein genes

Cooption with and without gene duplication

Restriction on no. of binding sites of transcription factors in a regulatory region of one gene?

Later divergence of duplicated genes results in more complexity

Transposable elements: 45% of human genome

Majority: selfish

Minority: gene regulation and other functions

Kidwell-Lisch 2001

Life cycle (DNA mediated type)
invasive phase
stage of maturity (stable)
stage of senescence

Broad spectrum on fitness

Host recruitments: Regulatory functions

Enzyme functions

Restructuring of genome: recombination among elements

Selfish DNA s < 1/{ 1+(1-p) } Outbreeding is necessary. D. A. Hickey 1982

Regulatory sequences from transposable elements Jordan et al. 2003

24% of promoter regions of human genome contain
TE derived sequences
8% of total nucleotides in promoter regions are
LINES and SINES

They correspond to 0.2% of the total genome and are much less than 45%

Micro RNAs derived from genomic repeats Smalheiser et al. 2005

11 out of 220 miRNA precursors: LINES, SINEs, tRNAs and mariner reps.

Driving force to create new miRNAs in mammals

MicroRNA and developmental canalization Hornstein and Shomron 2006

Buffer activity of genes: stability of phenotype and accumulation of cryptic variation

Conserved miRNA-binding sequences in more than 1/3 of genes

Network motifs like FFL: canalization and robustness

Genome complexity and Drift Lynch and Cornery 2003

	Pop. Size	Genome	Genome	Mobile
		size	complexity	elements
Prokaryotes	large	small	less	less
Multicellular	iaige	Sinan	1055	1000
eukaryotes	small	large	more	more

Complexity including mobile elements:

Drift is the initial force

Changing fitness landscape: ecology

Genetic backgrounds
Environments
Epigenetics

Joint influence of epistasis and plasticity on mutational effects Remold-Lenski 2004

Plasticity only 0/18 (environments)

Epistasis only 3/18 (genetic backgrounds)

Plasticity and epistasis

epistasis 6/18

Neither 9/18

Environments: glucose and maltose

Genetic: glucose-evolved and maltose-evolved

Fitness landscapes have enormous dimensionality

Nearly neutral networks expand through genotype space

Other genotypes are "holes"

Existence of multiple high fitness combinations of genes

Importance of mutational order and random drift (chance and contingency)

Gavrilets 2004

Rapid evolution in small populations

Nature of nearly neutral mutations

Continuity among beneficial, slightly advantageous and slightly deleterious classes

