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Context dependence

\What IS 1t?
eHOW common IS It?
‘How does It arise evolutionarily?

\What are Its consequences?
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Helmet height in Daphnia cucullata as a function of time of year (Dodson 1989, adapted from Woltereck 1909).



~— BOMF

Differentiation,
——P» survival, and
function

Endothelial cedl i
Q Hematopoiesis
HPC







Types of context-dependence

5) Various higher order interactions:

gene X gene x environment
gene X environment X environment

gene X gene x environment X environment

1-5 are variations on a single theme.






Context-dependence
and Genetic architecture

* (Average) effects of important genes

e Thelr genomic positions

 Number of genes

* Individual context dependence

o Contributions population level context dependence
to genetic variance

Modified from Zeng et al. 1999 Genet. Res. Camb.



How common
1S context
dependence?



How common
IS context-dependence?

Do different ecological parameters
cause the same amount of
dependence In the effects of alleles?



Genotypes:

Mutants differ from progenitor at single,
randomly located genes

single gene mutants
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Genotypes: Environments:

Measure fitnhess effect of all
mutations in 4 environments

3 experiments
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Fithess Effect
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How common
IS context-dependence?

Do ecological environment, genetic
environment or both influence the
effect of a mutation on fithess?



This experiment:
Transplant mutations into different
genetic environments

Transplant mutant genotypes into
different ecological environments
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Methods:

18 mutations Measure fithess effect In
T 5 genetic and 2 ecological
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Expected patterns:

Ecological eneti
Environment Environm

Fithess effect
\\

glufose maltose

Effect of a single
mutation in different
genetic environments



Expected patterns:

Ecological Genetic
Environment Environment

Fithess effect

glucose maltose glucose maltose
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How does context
dependence arise?



How does context-dependence
arise in E. coli?

 Are differences between genetic
environments caused by changes due

to response to selection or to random
events?



E. col

loN In

Long-term evolut




Long-term evolution In E. coli

Fossil record



Genetic environments:
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Expected patterns:
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Expected patterns:

Selection . T or %
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[

glucose maltose glucose maltose

Random
contingency

111
i




:GJ_)O.OZ‘
| ©
Selection 25,00 0/9
. (D) .
history S mutations
T
-0.02 | NS |
glucose maltose
. I
§ o.oo-%ﬁ—o.om‘%f
Random @ . l | oosd | 3/9
contingency ¢ ~ mutations
S -0.10- 0.10- i
LL

glucose maltose  glucose maltose

Remold and Lenski (2004) Nature Genetics 36:423



How does context-dependence
arise in RNA kuses’?

Vesu:ular stomatltls virus (VSV)
e large population sizes
e very high mutation rates (1.1 mutations/genome)



VSV experimental hosts

mammalian host cells grown in tissue culture
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100 generations evolution in new
host - regimes

evolved VSV
populations
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Fithess In differing host environments

Ln(Relative Fitness) Ln(Relative Fitness)
6-5-4-3-2-1012 3 4 6-5-4-3-2-1012 3 4
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Genetic changes
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Parallel genetic changes
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Parallel genetic changes
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Parallel genetic changes
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Five sets of co-occurring shared alleles suggest

that epistatically interacting groups have become

fixed in multiple lineages.
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Parallel genetic changes
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Parallel genetic changes
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Parallel genetic changes
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that epistatically interacting groups have become
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Parallel genetic changes
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What are the
consegquences
of context
dependence?



Allele’s affect on
phenotype

. Genetic
Population’s .
: architecture
role In the
at level of

environment

\/ population



Allele’s affect on
phenotype

Context-dependent
allelic effects

. Genetic
Population’s .
: architecture
role In the
at level of

environment

\/ population



Phage ¢6 of Pseudomonas phaseolicola

How will co-infection and epistasis affect
the rate of loss of deleterious alleles?

Strong synergistic effect

©SEE

Replicate mixed populations infect hosts at low
and high multiplicity of infection.

Froissart et al 2004 Genetics 168:9



+ +

Sex: Complementation:
Reassortment of Presence of the WT
synergistically epistatic gene product due to
mutations could speed co-infection could
their elimination from decrease the

the population mutation’s cost and

slow Its elimination

Froissart et al 2004 Genetics 168:9
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Allele’s affect on
phenotype

Context-dependent
allelic effects

. Genetic
Population’s .
: architecture
role In the
at level of

environment :
population
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In the absence of gene flow, E coli populations
rapidly diverge in the genetic architecture, even

In the presence of parallel selection.



Allele’s affect on
phenotype

Context-dependent
allelic effects

. Genetic
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Why do tradeoffs arise?

Ln(Relative Fitness) Ln(Relative Fitness)
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Antagonistic plelotropy

A

MDCK cells

A Increases fithess A decreases fithess

True functional linkage



Mutation accumulation
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Expectation under antagonistic pleiotropy

§ E different loci
— responsible for
adaptation In

2 —3 = single
VS
Alternating
Tradeoff . o ol
avoided o :Iu_l_'_'_u-

Assumption: P(potential beneficial mutation arises and
becomes fixed in at least some lineages) is high



Expectation under mutation accumulation

Apparent s

tradeoff
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T

same loci
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Tradeoffs: General trends
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Tradeoffs: General trends

P

consistent with mutation accumulation
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High variances - rapid adaptation?

Ln(Relative Fitness) Ln(Relative Fitness)
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Context dependence

« Broadly speaking, context dependence occurs when
the effect of an allele on other factor(s).

 May be very common, and higher order interactions
may be most common.

e Both contingency and selection can contribute to the
evolution of context dependence.

e Context dependence can increase diversity among
populations and can affect the probability of colonization
of new niches.
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Fithess measured in direct competition:
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Fithess measured in direct competition:

] e
~ Ve miX _3
N -
Day O Day 1
Ancestor
(with neutral
marker) Determine R, Determine R,
initial ratio = : A final ratio E : A

In (R) - In (Ry)

In (Relative fitness) = :




Selected in Glucose

backgrounds isolated
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VSV Structure and Genome
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