Inside-Out Planet Formation ^δLANETS IN STA Its Implication

Physics of Exoplanets

KITP, UCSB Feb. 26, 2015

CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS Sourav Chatterjee (CIERA, Northwestern University)

> Jonathan C. Tar (University of

Kepler Planet Candidates

http://exoplanetarchive.ipac.caltech.edu

Kepler Planet Candidates

http://exoplanetarchive.ipac.caltech.edu

How do the Systems with Tightly-Packed Inner Planets (STIPs) Form?

Formation then Inward Migration

(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014)

Formation in situ

(e.g., Chiang & Laughlin 2013; Hansen & Murray 2012, 2013)

Formation then Inward Migration

(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014)

Formation in situ

(e.g., Chiang & Laughlin 2013; Hansen & Murray 2012, 2013)

- Expected to form resonance chains
- Most STIPS planet pairs are not near resonant (e.g., Lissauer et al. 2011; Fabrycky et al. 2014)

Formation then Inward Migration

(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014)

- Expected to form resonance chains
- Most STIPS planet pairs are not near resonant (e.g., Lissauer et al. 2011; Fabrycky et al. 2014)

• Several proposed work around:

- resonant trapping of small planets is inefficient (e.g., Goodreich & Schlichting 2014)
- resonant repulsion (e.g., Lithwick & Wu 2012; Batygin & Morbidelli 2013)
- planetesimal interactions (e.g., Chatterjee & Ford 2015)

Formation in situ

(e.g., Chiang & Laughlin 2013; Hansen & Murray 2012, 2013)

Formation then Inward Migration

(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014)

- Expected to form resonance chains
- Most STIPS planet pairs are not near resonant (e.g., Lissauer et al. 2011; Fabrycky et al. 2014)
- Several proposed work around:
 - resonant trapping of small planets is inefficient (e.g., Goodreich & Schlichting 2014)
 - resonant repulsion (e.g., Lithwick & Wu 2012; Batygin & Morbidelli 2013)
 - planetesimal interactions (e.g., Chatterjee & Ford 2015)

Formation in situ

(e.g., Chiang & Laughlin 2013; Hansen & Murray 2012, 2013)

- Planetesimals collide and grow from a massive solid enriched inner disk
- Supply of the required amount of solids is hard and can lead to unstable disks assuming standard solid to gas mass ratios (e.g., Raymond & Cossou 2014; Schlichting 2014).

Formation then Inward Migration

(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014)

- Expected to form resonance chains
- Most STIPS planet pairs are not near resonant (e.g., Lissauer et al. 2011; Fabrycky et al. 2014)
- Several proposed work around:
 - resonant trapping of small planets is inefficient (e.g., Goodreich & Schlichting 2014)
 - resonant repulsion (e.g., Lithwick & V 2012; Batygin & Morbidelli 2013)
 - planetesimal interactions (e.g., Chatterjee & Ford 2015)

Formation in situ

(e.g., Chiang & Laughlin 2013; Hansen & Murray 2012, 2013)

Planetesimals collide and grow from a massive solid enriched inner 10^{7} 10 10^{5} $\Sigma [g \text{ cm}^{-2}]$ 10^{4} 1000 100 0.2 0.1 0.3 0.4 0.0 a [AU]

(Schlichting 2014)

Formation then Inward Migration

(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014)

- Expected to form resonance chains
- Most STIPS planet pairs are not near resonant (e.g., Lissauer et al. 2011; Fabrycky et al. 2014)
- Several proposed work around:
 - resonant trapping of small planets is inefficient (e.g., Goodreich & Schlichting 2014)
 - resonant repulsion (e.g., Lithwick & Wu 2012; Batygin & Morbidelli 2013)
 - planetesimal interactions (e.g., Chatterjee & Ford 2015)

Formation in situ

(e.g., Chiang & Laughlin 2013; Hansen & Murray 2012, 2013)

- Planetesimals collide and grow from a massive solid enriched inner disk
- Supply of the required amount of solids is hard and can lead to unstable disks assuming standard solid to gas mass ratios (e.g., Raymond & Cossou 2014; Schlichting 2014).
- What if the inner disk is only enriched in solids (gas disk remains normal) and the enrichment is in a narrow ring?

The Inside-Out Planet Formation (IOPF) Model Fast Inward Radial Drift of Pebbles

Pressure:

Shakura & Sunyaev

Pressure:
Shakura & Sunyaev (1973)
Relative Speed:

$$P \sim \alpha^{-9/10} (Gm_{\star})^{17/20} (f_r \dot{m})^{4/5} r^{-51/20}$$

$$v_{gas} - v_{pebble} \propto \left(\frac{r}{\rho} \frac{dP}{dr}\right)^{1/2}$$

Drift Timescale: $t_{\rm drift} \sim 43.9 f_{\tau}^{-1} \alpha_{-3}^{1/5} m_{\star,1}^{1/5} (f_r \dot{m}_{-9})^{-2/5} r_{\rm AU}^{7/5} {\rm yr}$

Assumption 1: DZIB is first set by thermal ionization of alkali metals at T~1200 K

$$r_{1200K} = 0.178 \gamma_{1.4}^{-2/9} \kappa_{10}^{2/9} \alpha_{-3}^{-2/9} m_{*,1}^{1/3} (f_r \dot{m}_{-9})^{4/9} \text{AU}$$

(Chatterjee & Tan 2014)

Uncertainties in r_{1200K} : Energy extraction by a disk wind and opacity reduction due to dust destruction can reduce this value by a factor of a few (Zhang et al. 2013).

Assumption 2: Efficient pebble drift overwhelms any other stopping mechanism, e.g., shear instabilities (Weidenschilling 1980; Youdin & Shu 2002; Bai & Stone 2010), Rossby wave instabilities (Meheut et al. 2012; Lyra & Mac Low 2012).

Toomre mass (M_T)

- velocity dispersion of pebbles ~ Vr (r_{DZIB})
- Toomre parameter Q ~ 1

Ring mass (M_R)

• all mass in the pebble enhanced ring creates a single planet

Gap opening mass (M_G)

• fraction $\phi_G = 0.3$ (Zhu et al. 2013) of viscous-thermal criterion (Lin & Papaloizou 1993)

Isolation masses pebble dominated (M_{I,p}) gas dominated (M_{I,g})

• feeding zone $\phi_{\text{H}} \sim 3$ (e.g., Lissauer 1987) of Hill radius R_{H}

Mass Scales for the Formed Planets Different accretion rates

Comparison with Kepler Data TTV Planets: Mass vs Orbital Radius

Comparison with Kepler Data KPCs: Planet-Planet Separations

Comparison with Kepler Data Innermost Planet Mass vs Orbital Radii

Comparison with Kepler Data Innermost Planet Mass vs Orbital Radii

Comparison with Kepler Data Converting Mass to Radius

Comparison with Kepler Data Converting Mass to Radius

Comparison with Kepler Data "Vulcans": Planet Size & Orbital Radius

(Chatterjee & Tan 2015)

Comparison with Kepler Data Julcan Lanet Mass Crbital Radius

Comparison with Kepler Data "Vulcans": Required Accretion Rates

(Chatterjee & Tan 2015)

Comparison with Kepler Data "Vulcans": Required Accretion Rates

Accretion rates for 22 accretion disks tracing gas inside 0.2 AU. Similar values for classical T-Tauri stars (Alcala et al. 2014).

Features of this Model

- Rapid radial drift of pebbles enrich the inner disk. No need to appeal for extraordinary disk density profiles.
 - No "m-size barrier", actually "m-size **supply**".
- These are the first planets created in the system.
 - Contrast to e.g., Grand-Tac model.
- Can create 1-10 M_⊕ on tightly-packed short-period orbits starting from typical disks.
- Predicts flat scalings of planet mass with orbital radius. Likely consistent with data.
- Orbital spacing between adjacent planets is a large factor of R_H.
 - No reason to form or not form resonant chains.
- Predicts a linear scaling between "Vulcan" planet mass and orbital radius.
 - Consistent with current data (both scaling and normalization) with the caveat that mass is estimated from radius for Kepler systems.
 - Can be verified or falsified with RV-measured masses of "Vulcans".
- Indicates a plausible source of divergence between Kepler multi and Solar system analogs:
 - Strong local pressure traps formed early or not.