Small-Planet

Densities and System Architectures through Photodynamic Variations

Daniel Fabrycky
University of Chicago

NASA

NASA Kepler Participating Scientist Sloan Research Fellow

Image: Pyle/\
https://www.youtube.com/watch?v=gnZVvYm6KKM or
http://kepler.nasa.gov/multimedia/animations/orrery3/

Image: NASA/Pyle

Kepler-11: Six Transiting Planets

Outline: Small-Planet Densities

and System Architectures

through Photodynamic Variations
"small"

- Transit Timing Variations (TTV) $\rightarrow M_{p} \begin{gathered}1-6 ~ \\ 2-8 \\ R_{E}\end{gathered}$
- Photometric Approaches to TTV
- Eccentricities to Probe Formation

Dynamics: Orbital Timescales

Transit timing variations Agol et al. 2005,
Murray \& Holman 2005

Dynamics: Secular Timescales

$\mathrm{P}_{2} / \mathrm{P}_{1}=2.44$
Non-resonant
\rightarrow "Chopping" timing signal of Eric's talk, next
Transit timing variations Agol et al. 2005,
Murray \& Holman 2005

Dynamics: Resonant Orbits

Transit timing variations Agol et al. 2005,
Murray \& Holman 2005

Sensitivity

TTV signal scales as orbital periods - better for relatively distant planets.

Dynamical Model of Transits

Use Newton' s equations to integrate a 3-body system Numerical transit times and radial velocities

Fabrycky (2010)

Transit Computation

- Semi-analytical solutions, using basic limb darkening (Pal 2011)

$$
I[\mu]=1-c_{1}(1-\mu)-c_{2}(1-\mu)^{2}
$$

$$
\mu=\mu[x, y]=\left(1-\left(x^{2}+y^{2}\right)\right)^{\frac{1}{2}}
$$

(slide courtesy UChicago graduate student Sean Mills)

"Ground truth"

- Neptune's discovery
- Checking TTV masses by Radial Velocity
- Kepler-18 (Multi-transiting)
- KOI-142 (TTV discovery)
- Lauren Weiss' poster on Kepler-11

Kepler-18 (Cochran, Fabrycky, et al. 2011)

Planet	Period (days)	Mass $\left(\mathbf{M}_{\text {Earth }}\right)$
b	3.5	12 ± 5
c	7.6	15 ± 5
d	14.9	28 ± 7

$$
P=7.6416 \text { days }
$$

$P=14.8589$ days

Fit adjusts: $\quad \mathrm{P}, \mathrm{T}_{0}$ (phase), ecosw, esimw, M_{p} of each planet

The Great Inequality is observed!

Kepler-18 tests TTV masses

Planet	Period (days)	RV Mass $\left(\mathbf{M}_{\text {Earth }}\right)$	TTV Mass $\left(\mathbf{M}_{\text {Earth }}\right)$
b	3.5	12 ± 5	18 ± 9
c	7.6	15 ± 5	17.3 ± 1.7
d	14.9	28 ± 7	15.8 ± 1.3

Other multi-transiting test?
Kepler-9: published RV dataset has 6 points for 3 planets, an insufficient test; (see Dreizler \& Ofir (2014), Borsato+14 for TTV mass)

TTV-discovered Planet, Checked by RV

- KOI-142 (Nesvorny et al. 2013)

Fitted parameters

$\begin{array}{ll}22.340+/-0.002 & \text { Orbital period, } P \text { [days] } \\ 0.0559+/-0.0004 & \text { Orbital eccentricity } \\ 0.63+/-0.03 & \text { Minimum planet mass }\left[M_{\mathrm{J}}\right]\end{array}$

- KOI-1474 (Dawson et al. 2012, 2014)

Kepler-11

Lissauer, Fabrycky, et al. 2011

See Weiss's poster for the full set of observations and excellent fit.

Measure Radius from the transit depth. Measure Mass from the neighbor's transit timing.

From Earth-sized to Mini-Neptunes

"Have you tried taking the smallest two Kepler-11 planets, fixing them at higher masses, and actually seeing if you can't find a solution... that isn't offensive?" -
-Dave Charbonneau on Monday

Quick work by Daniel Jontof-Hutter!

(Lissauer, Jontof-Hutter, et al. 2013 updated analysis of Kepler-11)

More Extreme Sub-Neptunes

 (don't ignore them - they're real!)| Kepler \# Planet | $\begin{aligned} & \mathrm{T}_{\mathrm{eq}} \\ & (\mathrm{~K}) \end{aligned}$ | TTV Mass ($\mathrm{M}_{\text {Earth }}$) | Transit Radius ($\mathrm{R}_{\text {Earth }}$) | Ref. | See Daniel JontofHutter's poster and talk with him! |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 79 d | 634 | $6.0+2.1{ }_{-1.6}$ | $7.16{ }^{+0.13}-0.16$ | Jontof-Hutter + 2014 | |
| 51 b | 543 | $2.1+1.5{ }_{-0.8}$ | 7.1 ± 0.9 | Masuda 2014 | |
| 87 c | 403 | 6.4 ± 0.8 | 6.1 ± 0.3 | Ofir + 2014 | |
| | | | | Same density as the architypical puffy hot Jupiter, TrES-4 (Sozzeti et al. 2015) | |

More Extreme Sub-Neptunes

Kepler-79 e

<< Jontof-Hutter+14
< Masuda 14

VV Ofir+14

From Earth-sized to Mini-Neptunes

Exoplanetary System Architectures

Basic facts:

- Planet number
- Masses
- Radii

Dynamical properties:

- Periods (n.b.: their ratios)
- Eccentricities
- Mutual Inclinations

Transits	Radial Velocities
w/ TTV	$\boldsymbol{\iota}$
w/ TTV	$\boldsymbol{\iota}$
$\boldsymbol{\checkmark}$	
$\boldsymbol{\checkmark}$	
w/ TTV	$\boldsymbol{\iota}$
w/ TDV	

Clearinghouse of TTV and TDV curves: Mazeh et al. 2013 ftp://wise-ftp.tau.ac.il/pub/tauttv/TTV
Version 112 sub-directory for the latest

Kepler-30

Fabrycky, Ford, Steffen et al. 2012

A few Resonant chains

- Kepler-223 (KOI-730; 4:3, 3:2, 4:3)
- Kepler-60 (KOI-2086; 5:4, 4:3)
- Kepler-80 (KOI-500; 1.518, 1.518, 1.350)

KOI-730 TTVs, detected at last!

See Sean Mills' poster!

KOI-730

Phase near Transit (constant-period phasing)

Photodynamic MODEL

\sim	-	\sim	
		\sim	
	\sim	\sim	\checkmark
	-	\cdots	
	\cdots	\sim	
	*	\bigcirc	\checkmark
	\sim	\checkmark	\checkmark
\bigcirc	\sim	\checkmark	\checkmark
\checkmark	\cdots	\square	\cdots
0	\cdots	\sim	\checkmark

Phase near Transit (constant-period phasing)

Sinusoidal Photodynamics

- Work in progress: Fitting photometry of all multitransiting systems with transit phase

$$
\Phi=T_{0}+P x E+A_{t t v} \sin \left(2 \pi t / P_{t t v}+\phi_{t t v}\right)
$$

Carter et al. (2008) [yes, idealized!] Lithwick et al. (2012)

Eccentricities of Terrestrials?

- Planet formation options:
- Within gas disk \rightarrow low eccentricities
- Giant Impacts \rightarrow orbits cross, eccentricities much larger than the Hill sphere
caveat: there may be some damping on residual or secondary debris (e.g., Schlichting et al. 2012)

Eccentricities of Terrestrials?

- Planet formation options:
- Within gas disk \rightarrow low eccentricities
- Giant Impacts \rightarrow orbits cross, eccentricities much larger than the Hill sphere

TTV phases of 54 systems: Hadden \& Lithwick (2014) analyzing Mazeh+13 TTs.

Near - 2:1, 3:2, 4:3 resonant perturbation relates: $\phi_{\text {tiv }} / \mathrm{e}_{\text {free }}$

$$
\sigma_{e}= \begin{cases}0.017_{-0.005}^{+0.009}, & \text { for } R \text { and } R^{\prime}<2.5 R_{\oplus} \\ 0.008_{-0.002}^{+0.003}, & \text { for } R \text { and } R^{\prime}>2.5 R_{\oplus}\end{cases}
$$

Summary

- Kepler found a host of multiplanet systems.
- TTV masses reveal Super-Puffy Sub-Neptunes
- Photodynamics opens a new window on exoterrestrial planet formation

