Small-Planet Densities and System Architectures through Photodynamic Variations

Daniel Fabrycky University of Chicago NASA Kepler Participating Scientist Sloan Research Fellow

Image: Pyle/N

https://www.youtube.com/watch?v=gnZVvYm6KKM or http://kepler.nasa.gov/multimedia/animations/orrery3/

Image: NASA/Pyle

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

12

Kepler telescope's edge-on view of compact planetary system around Sun-like star **PAGE 53**

POLICY **DEEP-SEA** MINING Regulate now to protect hydrothermal vent species PAGE 31

DRUG DISCOVERY TAKING THE LEAD Debating how to keep the pipelines flowing PAGE 42

ADAPTIVE IMMUNITY **EARLY ORIGIN** FOR A 'THYMUS' Gill-based thymoid found in living-fossil lampreys PAGE 90

⇒ NATURE.COM/NATURE

Image: NASA/Pyle

NO. 7332

Outline: Small-Planet Densities and System Architectures through Photodynamic Variations

- Transit Timing Variations (TTV) $\rightarrow M_p \stackrel{1-6}{_{2-8}} M_E$
- Photometric Approaches to TTV
- Eccentricities to Probe Formation

0.5-2 R_E rocky

"small"

Dynamics: Orbital Timescales

Transit timing variations

Agol et al. 2005, Murray & Holman 2005

Dynamics: Secular Timescales

 $P_2/P_1 = 2.44$ Non-resonant

→ "Chopping" timing signal of Eric's talk, next

Transit timing variations Agol et al. 2005, Murray & Holman 2005

Dynamics: Resonant Orbits

 $P_2/P_1 = 2.00$

Transit timing variations

Agol et al. 2005, Murray & Holman 2005

TTV signal scales as orbital periods – *better* for relatively distant planets.

Dynamical Model of Transits

Use Newton's equations to integrate a 3-body system Numerical transit times and radial velocities

Transit Computation

Semi-analytical solutions, using basic limb darkening ۲ (Pal 2011)

$$I[\mu] = 1 - c_1(1 - \mu) - c_2(1 - \mu)^2$$
$$\mu = \mu[x, y] = (1 - (x^2 + y^2))^{\frac{1}{2}}$$

(slide courtesy UChicago graduate student Sean Mills)

"Ground truth"

- Neptune's discovery
- Checking TTV masses by Radial Velocity
 - Kepler-18 (Multi-transiting)
 - KOI-142 (TTV discovery)
 - Lauren Weiss' poster on Kepler-11

Kepler-18 (Cochran, Fabrycky, et al. 2011)

P/P=1.944 ~= 2/1

Fit adjusts: P, T_0 (phase), ecosw, esinw, M_p of each planet

The Great Inequality is observed!

Kepler-18 tests TTV masses

Planet	Period (days)	RV Mass (M _{Earth})	TTV Mass (M _{Earth})
b	3.5	12 ± 5	18 ± 9
С	7.6	15 ± 5	17.3 ± 1.7
d	14.9	28 ± 7	15.8 ± 1.3

Other multi-transiting test?

Kepler-9: published RV dataset has 6 points for 3 planets, an insufficient test; (see Dreizler & Ofir (2014), Borsato+14 for TTV mass)

TTV-discovered Planet, Checked by RV

KOI-1474 (Dawson et al. 2012, 2014)

Mercury-through-Jupiter mutual perturbations.

Concept: Holman & Murray 2005

Kepler-11

Lissauer, Fabrycky, et al. 2011

"Have you tried taking the smallest two Kepler-11 planets, fixing them at higher masses, and actually seeing if you can't find *a* solution... that isn't offensive?" -Dave Charbonneau on Monday

Quick work by Daniel Jontof-Hutter!

(Lissauer, Jontof-Hutter, et al. 2013 updated analysis of Kepler-11)

More Extreme Sub-Neptunes

(don't ignore them - they're real!)

Kepler # Planet	T _{eq} (K)	TTV Mass (M _{Earth})	Transit Radius (R _{Earth})	Ref.	See Daniel Jontof- Hutter's poster and talk with him!
79 d	634	6.0 ^{+2.1} -1.6	7.16 ^{+0.13} -0.16	Jontof-Hutter + 2014	
51 b	543	2.1 ^{+1.5} -0.8	7.1 ± 0.9	Masuda 2014	
87 c	403	6.4 ± 0.8	6.1 ± 0.3	Ofir + 2014	
				Same c archityp TrES-4	lensity as the bical puffy hot Jupiter, (Sozzeti et al. 2015)

More Extreme Sub-Neptunes

t_c (BJD - 2454833)

Planet Radius (R_{\oplus})

Exoplanetary System Architectures

Basic facts:

- Planet number
- Masses
- Radii
- Dynamical properties:
- Periods (n.b.: their ratios)
- Eccentricities
- Mutual Inclinations

Transits	Radial Velocities
w/ TTV	~
w/ TTV	v
 	
~~	v
w/ TTV	v
w/ TDV	

Clearinghouse of TTV and TDV curves: Mazeh et al. 2013 <u>ftp://wise-ftp.tau.ac.il/pub/tauttv/TTV</u> Version 112 sub-directory for the latest

Kepler-30

Fabrycky, Ford, Steffen et al. 2012

A few Resonant chains

- Kepler-223 (KOI-730; 4:3, 3:2, 4:3)
- Kepler-60 (KOI-2086; 5:4, 4:3)
- Kepler-80 (KOI-500; 1.518, 1.518, 1.350)

KOI-730 TTVs, detected at last!

KOI-730 DATA

Photodynamic MODEL

Sinusoidal Photodynamics

Work in progress: Fitting photometry of all multitransiting systems with transit phase

 $\Phi = T_0 + PxE + A_{ttv} \sin(2\pi t/P_{ttv} + \phi_{ttv})$

Eccentricities of Terrestrials?

- Planet formation options:
 - Within gas disk \rightarrow low eccentricities
 - Giant Impacts → orbits cross, eccentricities much larger than the Hill sphere

caveat: there may be some damping on residual or secondary debris (e.g., Schlichting et al. 2012)

Eccentricities of Terrestrials?

- Planet formation options:
 - Within gas disk \rightarrow low eccentricities
 - Giant Impacts → orbits cross, eccentricities
 much larger than the Hill sphere

TTV phases of 54 systems: Hadden & Lithwick (2014) analyzing Mazeh+13 TTs.

Near - 2:1, 3:2, 4:3 resonant perturbation relates: ϕ_{ttv} / e_{free}

 $\begin{cases} 0.017^{+0.009}_{-0.005}, & \text{for } R \text{ and } R' < 2.5 \ R_{\oplus} \\ 0.008^{+0.003}_{-0.002}, & \text{for } R \text{ and } R' > 2.5 \ R_{\oplus}. \end{cases}$

Summary

- *Kepler* found a host of multiplanet systems.
- TTV masses reveal Super-Puffy Sub-Neptunes
- Photodynamics opens a new window on *exo*terrestrial planet formation

