Surface-interior exchange

on rocky and icy planets
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Testability requires linking processes of
interest (mineralogical, metabolic, ...) to
atmospheric properties that we can measure;
this requires basic theory for surface-interior T
exchange rate (T, s1) that is currently
undeveloped

Today: What can we infer about { on planets in
general from the 3 data points in hand?

Earth, {= 1018 s (Pinatubo Plume)



If volcanism ceased, Earth’s biosphere would become undetectable over
interstellar distances within 1 Myr
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High T : Potentially Habitable Near-Surface Ocean Low { : Sterile Near-Surface Ocean
Europa Ganymede
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Understanding surface-interior exchange ()
after the epoch of formation is necessary to
understand super-Earth atmospheres,
H,/H,0 ratios, and habitability



Understanding surface-interior exchange () after the epoch of
formation is necessary to link hypotheses to measurable properties

* How much H, can be produced >108 yr after formation?
e Short-period rocky planet atmospheres

* Climate stabilization on planets with modest atmospheres
Kasting et al. 1993; Kite et al. 2011; Kopparapu et al. 2013.

* Nutrient resupply for chemosynthetic biosphere on planets
with atmospheres that are opaque in the visible

* Testability via short-lived species e.g. SO,

* Loss rates vary between gases, so atmospheres could be a
mix of gases left over from accretion and those replenished
by volcanism.



Open questions

How does silicate

volcanism scale to Effect of mass and galactic cosmochemical
Super-Earths? evolution minor; age moderately important;
Earth, {=10"8s%: thickness of volatile overburden critical.
How do rocky planets dispose J
of extreme internal heating? <Z

f lo, T = 10°15 s1;

Heat-p:pet volcanism simply re/a.tes o What governs the rate of
( to heat input; magma planet implications? :
cryo-volcanism?

Enceladus, {= 1016 s1:




Earth, { = 108 st: partial melting by decompression

Planet’s mantle is cooled by conduction through a thin boundary layer lithosphere
Decompression (partial) melting of mantle to form a crust
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Kite, Manga & Gaidos, ApJ, 2009
Tackley et al., IAU Symp. 293, 2014
Stamenkovic, 2014

 How does melt flux vary with time and planet mass?
*\What is the role of galactic cosmochemical evolution?
e Can volcanism occur on volatile-rich planets?



How Earth-like melting scales to Super Earths

Kite, Manga & Gaidos ApJ 2009
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Simple thermal model and simple melting model
Kite, Manga & Gaidos ApJ 2009

0T H o —BA
“_ = L k(T — TP exp ( P Ao Thermal quels tuned to 7k,m
at c L thick oceanic crust on today s
Earth
ko= 2K @gd Cooling rate 50-100 K/G
e cdMmanie \ KVoRac, ooling rate ) i

Korenaga AREPS 2013

Assume:
Small residual porosity
Melts separate quickly
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Super-Earth volcanism
Kite, Manga & Gaidos, ApJ, 2009

Earth today
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Many “Earths” defined using 5% radius error will lack volcanism

Both hydrogen mass fraction and water mass fraction are very variable:
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Volcanism-free planets are primed for

H, production

Serpentinization: rapid for mantle rocks, slow for crust.
Serpentinization rare on Earth because mantle rocks
are usually shrouded by crust
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Open questions

How does silicate

volcanism scale to Effect of mass and galactic cosmochemical
Super-Earths? evolution minor; age moderately important;
Earth, {=10"8s%: thickness of volatile overburden critical.
How do rocky planets dispose J
of extreme internal heating? <Z

f lo, {= 1015 s°L:

Heat-p/pef volcanism simply relqtes o Wit movETS e rEe
( to heat input; magma planet implications? :
cryo-volcanism?

Enceladus, {= 1016 s1:




lo (Jupiter 1) ,{ = 101> s1: fastest surface-interior exchange rate known

L. Morabito et al., Science 1979

Total heat flow 40 x Earth
(Veeder et al. Icarus 2012)

Conductive lithosphere would be
1500/(Q/k) ~ 2 km thick
But mountains are up to 18 km high!




Surface-interior exchange in heat-pipe mode on lo:
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C is more predictable for massive and/or young rocky

planets than for old and/or small rocky planets

No heat pipes Kite, Manga & Gaidos, ApJ 2009
With heapt E,ipes Moore et al. J. Geophys. Res. 2003
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How does T affect magma planet / disintegrating planet observables?
Kepler-10b, -32b, -42c, -78b, -407b, CoRoT-7b, KIC 12557548b ...

Low : Thin Al + Ti + O atmosphere High {: Thick atmosphere including Na, K
Slow mass loss Fast mass loss

Rappaport et al. 2012

Perez-Becker & Chiang MNRAS 2013
Sanchis-Ojeda et al. ApJ 2014

Croll et al. arXiv 2014

Bochinski et al. ApJL 2015



How does { affect magma planet / disintegrating planet observables?
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Open questions

How does silicate

volcanism scale to Effect of mass and galactic cosmochemical
Super-Earths? evolution minor; age moderately important;
Earth, {=10"8s%: thickness of volatile overburden critical.
How do rocky planets dispose J
of extreme internal heating? <Z

f lo, (=105 s1;

Heat-pipe volcanism simply relates

( to heat input; implications for magma What governs the rate of
planets? cryo-volcanism?
Enceladus, {= 1016 s1:




Enceladus (Saturn I1), = 1016 s:

the only known active cryovolcanic world

Cassini ISS
==
Problems:
Why ( = 10-16g1 ? addressed today;
Persistence of eruptions through diurnal tidal cycle collaboration
Fissure eruptions maintained for >>Kyr with Allan Rubin
Preventing sub-ice ocean from refreezing over Gyr —— longer

timescales



Cryo-volcanism on Enceladus has deep tectonic roots

4 continuously-
active “tiger stripes”
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Volcanism

Probing tectonics
— Enceladus

Tectonic mode:

Seismicity

GeeJegy Geomorphology S

Gravity




(4.620.2) GW excess thermal emission from surface fractures
(~10 KW/m length; all four tiger stripes erupt as “curtains”)

South polar projection
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to Saturn

Porco et al. Astron. J. 2014

Spitale et al., Nature accepted

Spencer & Nimmo AREPS 2013

Hotspots up to 200K
No liquid water at surface
Latent heat represented by plumes < 1 GW




Key constraint #1: avert freeze-up at water table

) Kite & Rubin, in prep.
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Key constraint #2: match tidal response of plumes
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New model: Melted-back slot Kite & Rubin, in prep.

Compression

Attractive properties:

* Matches (resonant) phase lag

* Eruptions persist through 1.3d cycle
e Matches power output

* Pumping disrupts ice formation

e Slot evolves to stable width

Tension
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Long-lived water-filled slots drive tectonics
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Slot model explains anc
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Future: research requiring only existing data: (=C(R, X, t ...)
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Summary: ( (R, X, t) =7

How does silicate
volcanism scale to
Super-Earths?
Earth, (=108 51

Effect of mass and galactic cosmogenic
evolution minor; age moderately important;
thickness of volatile overburden critical.

How do rocky planets dispose J
of extreme internal heating? <~

f lo, { = 1015 s

Heat-pipe volcanism simply relates
( to heat input; implications for magma

What governs the rate of
cryo-volcanism?
planets?

—> Enceladus, {= 1016 s1:

Turbulent dissipation within tiger
stripes may explain the power
output of Enceladus.

THE UNIVERSITY OF
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